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Introduction to relative survival
analysis



Relative survival context

Relative Survival Context: In population-based studies and/or cancer registries, the specific cause of
death is often unidentified, unreliable or even unavailable.

Random Variable Name Observed ?

E "Excess" lifetime No
P "Population" lifetime No, but known distribution.
O = E ∧ P "Overall" lifetime No
C "Censoring" time No
X Vector of covariates Yes
T = O ∧ C Event time Yes
∆ = 1{T ≤ C} Event status Yes

1{E ≤ P} Cause of death No

Goal: Estimate the distribution of E , say by it’s hazard ∂ΛE (t) = −∂ lnSE (t).

Remark: With the missing cause of death indicatrix, we cannot use directly competing risks analysis..
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(In)Dependence assumptions

Remark: The joint distribution of (E ,P,C ,X ) characterizes our observations.

Assumptions (Standard assumptions1)

C ⊥⊥ (E ,P,X )

E ⊥⊥ X

The distribution of P|X is known from standard life tables (at time 0).

Assumptions (Dependence structure of (E ,P))

The (HC) hypothesis states that (E ,P) has survival copula the bivariate copula C:

(HC) : SO(t) = C (SE (t), SP(t)) (1)

Example: Denoting Π the independence copula, (HΠ) ⇐⇒ E ⊥⊥ P was assumed in previous literature.

Issue: It would be reasonable to assume that C ̸= Π.. But remark that C is not identifiable !

1Maja Pohar Perme, Janez Stare, and Jacques Estève. “On Estimation in Relative Survival”. In: Biometrics 68.1 (Mar. 2012), pp. 113–120. ISSN: 0006-341X,
1541-0420. DOI: 10.1111/j.1541-0420.2011.01640.x. (Visited on 11/05/2023).
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Dataset, filtration, stochastic processes

Observations: Let (Xi ,Ti ,∆i )i=1,...,n be an observed, i.i.d., n-sample.

Filtered probability space: (Ω,A, {Ft , t ∈ R+} ,P) with Ft = σ {Xi , (Ti ,∆i ) : Ti ≥ t, ∀i ∈ 1, .., n} .

As standard in survival analysis2,3, we define the following stochatic processes:

N(t) = 1{O ≤ t,O ≤ C} (Uncensored deaths process)

Y (t) = 1{O ≥ t,C ≥ t} (At-risk process)

M(t) = N(t)−
∫ t

0
Y (s)∂ΛO(s) (Martingale)

NE (t) = 1{E ≤ t,E ≤ C} (Excess uncensored deaths process)

YE (t) = 1{E ≥ t,C ≥ t} (Excess at-risk process)

We similarly defined individual versions Ni ,Yi ,Mi ,NEi
and YEi

.
Issue: NEi

and YEi
are not observable.

2Thomas R Fleming and David P Harrington. Counting Processes and Survival Analysis. Vol. 625. John Wiley & Sons, 2013.
3Per Kragh Andersen, Ørnulf Borgan, Richard D. Gill, and Niels Keiding. Statistical Models Based on Counting Processes. Springer Series in Statistics. New York,
NY: Springer US, 1993. ISBN: 978-0-387-94519-4 978-1-4612-4348-9. DOI: 10.1007/978-1-4612-4348-9. (Visited on 02/22/2024).
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Link between (NE ,YE , ∂ΛE ) and (N ,Y , ∂ΛO)

Let a(t) = P (P ≥ t|E = t) , b(t) = P (P = t|E ≥ t) and c(t) = P (P ≥ t|E ≥ t).

Lemma (Expressions of NE ,YE ,ΛE , Doob-meyer decomposition of NE .)
Integrating out P , we have:

∂NE (t) =
1

a(t)
E (∂N(t)|E ,C )− b(t)

a(t)c(t)
E (Y (t)|E ,C )

YE (t) =
1

c(t)
E (Y (t)|E ,C )

∂ME (t) =
1

a(t)
E (∂M(t)|E ,C )

∂ΛE (t) =
c(t)

a(t)

(
∂ΛO(t)−

b(t)

c(t)

)
.

Furthermore, the process NE admits the following Doob-Meyer decomposition:

∂NE (t) = ∂ME (t) + YE (t)∂ΛE (t),

Warning: These conditional expectations (and thus NE ,YE ) are still not observable!
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Estimation of the excess hazard



Estimators of NE ,i , ME ,i , YE ,i

We drop the previous conditional expectations to obtain:

∂ÑE ,i (t) =
∂Ni (t)

ai (t)
− bi (t)

ai (t)ci (t)
Yi (t)

ỸE ,i (t) =
Yi (t)

ci (t)

∂M̃E ,i (t) =
∂Mi (t)

ai (t)

∂Λ̃E (t) =

∑n
i=1 ∂ÑEi

(t)∑n
i=1 ỸEi

(t)
. (2)

However, note that the constants can be expressed as follow:

ai (t) = C1 (SE (t), SPi
(t))

bi (t) = C2 (SE (t), SPi
(t))

−∂SPi
(t)

SE (t)

ci (t) = C(SE (t), SPi
(t))

1
SE (t)

,

Problem: Λ̃E (t) is still not observable since it depends on unknow SE .
Exception: Uner (HΠ), Λ̃E (t) is observable !
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A differential equation to be solved

Definition (Generalized PPE)

We call generalized Pohar Perme estimator a solution of the differential equation

∂Λ̂E (t) =

∑n
i=1 ∂N̂E ,i (t)∑n
i=1 ŶE ,i (t)

=

∑n
i=1

1
âi (t)

∂Ni (t)− b̂i (t)
âi (t)ĉi (t)

Yi (t)∑n
i=1

1
ĉi (t)

Yi (t)
, (3)

where for all i ∈ 1, ..., n,

âi (t) = C1

(
e−Λ̂E (t), SPi

(t)
)
,

b̂i (t) = C2

(
e−Λ̂E (t), SPi

(t)
)
(−∂SPi

(t)) eΛ̂E (t),

ĉi (t) = C
(
e−Λ̂E (t), SPi

(t)
)
eΛ̂E (t).

Remark: Under (HΠ), C(u, v) = uv , C1(u, v) = v and C2(u, v) = u, and the differential equation is
separable. It is called the Pohar Perme estimator, consistent and asymptotically unbiased estimator of the
excess hazard.
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Variance estimation



Excess Doob-Meyer decomposition.

Lemma (Doob-Meyer decompositions)

(i) The process ÑE ,i admits the following Doob-Meyer decomposition:

∂ÑE ,i (t) = ∂M̃E ,i (t) + ỸE ,i (t)∂ΛE (t),

where ∂ΛE (t) is the true excess hazard.

(ii) The process Λ̃E admits the following Doob-Meyer decomposition:

Λ̃E (t) = ΛE (t) + Ξ(t),

where the local square integrable martingale Ξ is defined by:

∂Ξ(t) =

∑n
i=1

1
ai (t)

∂Mi (t)∑n
i=1

Yi (t)
ci (t)

.

(ii) is derived from (i) which is derived from the DM decomposition of Ni ’s.
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Variance estimation

Standard techniques using optional processes.

Property (Variance of Λ̃E (t))

Var
(
Λ̃E (t)

)
= E ([Ξ] (t)) = E

∫ t

0

∑n
i=1

1
ai (t)2

∂Ni (t)(∑n
i=1

Yi (t)
ci (t)

)2



Thus, a good estimator for the variance of Λ̃E (t) is simply [Ξ] (t).

Definition (Estimator of Λ̃E (t)’s variance)

σ̃2
E (t) = [Ξ] (t) =

∫ t

0

∑n
i=1

1
ai (t)2

∂Ni (t)(∑n
i=1

Yi (t)
ci (t)

)2 and σ̂2
E (t) =

∫ t

0

∑n
i=1

1
âi (t)2

∂Ni (t)(∑n
i=1

1
ĉi (t)

Yi (t)
)2

Under (HΠ), σ̃2
E (t) is feasible, already obtained in previous litterature. However, under (HC), σ̃2

E (t) is not
feasible, and thus we propose to use the straightforward plug-in estimator σ̂2

E (t).
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Log rank test and asymptotics



Groups and test statistic

Let G = {g1, .., gr} be a partition of 1, ..., n. For any symbol X ∈
{
ΛE , ÑE , M̃E , ỸE , Λ̃E

}
, denote first

X• =
∑n

i=1 Xi and then for any group g ∈ G , denote Xg =
∑

i∈g Xi .

We want to check the hypothesis:
(H0) : ∀g ∈ G , ΛE ,g = ΛE ,•.

For any group g , h ∈ G , define

Rg (t) =
ỸE ,g (t)

ỸE ,•(t)

∂Zg (t) = ∂ÑE ,g (t)− Rg (t)∂ÑE ,•(t)

∂Γg ,h(t) =
∑
ℓ∈G

(δℓ,g − Rg (t)) (δℓ,h − Rh(t))
∑
i∈ℓ

∂Ni (t)

ai (t)2
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Test assymptotics

Property (Expectation and variance of Z)

Under (H0), the multivariate process Z = (Zg , g ∈ G ) is centered, with variance-covariance matrix
defined by

Cov(Zg (t),Zh(t)) = E (Γg ,h(t)) .

Property
As n → ∞,

Z (t)√
n

D−−−→
n→∞

N (0,Σ(t)) ,

where Σ(t) is a square matrix with entries

Σg ,h(t) =
∑
ℓ∈G

(δg ,ℓ − ωg ) (δℓ,h − ωh)σ
2
ℓ

where ωg = limn→∞
|g |
n and σ2

g = 1
n

∑
i∈g E

(
a−2
i ,Ti

∆i

)
.

Result: Z ′Γ−1Z follows assymptiotically a χ2(|G | − 1) under (H0).
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Short example



Dataset: Colorectal cancer

The dataset we have consists of french patients with colorectal cancer, followed for up to 10 years, well
described in Wolski & Al4.

Demographic covariates X : age, sex, date of birth.
Extra covariate: Tumor location, left or right.

Main question on this data: Does the tumor location affect significantly the net survival ?

With known routines under (HΠ), they conclude that yes it does. But (HΠ) is known to be false..

4Anna Wolski, Nathalie Grafféo, Roch Giorgi, and the CENSUR working survival group. “A Permutation Test Based on the Restricted Mean Survival Time for
Comparison of Net Survival Distributions in Non-Proportional Excess Hazard Settings”. In: Statistical Methods in Medical Research 29.6 (June 2020), pp. 1612–1623.
ISSN: 0962-2802, 1477-0334. DOI: 10.1177/0962280219870217. (Visited on 12/13/2023).
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Figure 1: ŜE for several (HC). Data was split w.r.t. tumor location (left or right), and several copulas C are
proposed: Frank copulas (top), Clayton copulas (bottom), with varying Kendall τ . In each graph, τ = 0 ⇐⇒ C = Π
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Figure 2: Estimated standard errors
√

σ̂2
E (t). Again, for both the frank and Clayton copula, τ = 0 represents the

Pohar Perme-estimated variance. Multiply by ≈ 4 to get wideness of assymptotic CIs
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Figure 3: Left: Ratio of
√

σ̂2
E (t) and a bootstrap estimate (on N=200 resamples). Right: same ratios, recentered

on the τ = 0 curve (the Pohar Perme variance estimate), since this one does not suffer the plug-in biais.
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Conclusion



Conclusion

So far:

(i) Net survival estimation usually assumes (HΠ) : E ⊥⊥ P , which is known to be false.

(ii) The true dependence structure is not estimable from available data.

(iii) However, even small dependencies (τ = 0.2 or 0.3) can have large impact on results of estimators and
tests, and thus on public health decisions.

(iv) Removing the assumption would in many case yield a confidence interval as wide as the unit interval
for the survival function...

For all these reasons, we recommand that further analysis is made to craft acceptable
dependence structures for these datasets.

Shameless propaganda:

(i) Our code will soon land in the Julia package JuliaSurv/NetSurvival.jl.

(ii) The JuliaSurv GitHub organization is rising, contributions welcomed !

(iii) Currently hiring on related topics... Please reach me !

Thanks !
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