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Introduction
Copulas are multivariate distributions with 
margins. They allow to separate dependence and
marginals estimations (Sklar 1959). There exist a lot of
parametric models, although high-dimensional cases
are problematic for them, and few non-parametric
ones which usually requires a lot of data.

CORT is a nonparametric recursive copula estimator,
inspired by patchwork copulas of (Durante et al. 2015)

Piecewise linear copulas
An histogram with irregular bin shapes and weights…

 is a partition of 
 are associated weights
 the Lebesgue measure

Following (Ram and Gray 2011), we use
hyperrectangular leaves. The fitting algorithm finds,
recursively, the best breakpoint, like CART does. But
here, breakpoints are multidimensional, so the model
is expressive enough to accept the copula constraints.

…and easy integration of copula constraints

The copula constraints defines a convex, closed, and
non-empty domain , given by:

where the matrix  and the vector  depends on .
We solve for the projection of , the empirical
frequencies in the leaves, onto , with respect to the
distance associated to the matrix 

Fitting procedure
Given the partition , we use the integrated square
error (ISE) loss to optimize the weights  over :

Numerical exemple
Exemple dataset:  points, one uniform marginal
and three from a Clayton (with one reversed).

Figure 1: Obtained histogram (gray) against sample data (red) in the tree estimator

Figure 2: Obtained histogram (gray) against sample data (red) without dimension reduction

Figure 3: Obtained histogram (gray) against sample data (red) in the forest estimator

Figure 4: Out-of-bag Kullback-Leibler divergence  given by the fitted forest

Refinnements
Dimension reduction: An ISE based test to exclude
splitting dimensions. The hypothesis is:

The test statistic is then:

Following (Bowman 1992), the empirical value of the
statistic is compared to a monte-carlo distribution.
We make further simplifications to estimate .

Consitency: Using a result from (Ram and Gray 2011),
we show that the model is consistent, meaning that,
as soon as the maximum diameter of the leaves
decreases towards  with the increasing number of
observation, we have:

Copula random forest
The CORT estimator can be bagged easily, following
(Wu, Hou, and Yang 2017) for the density bagging
theory. Out-of-bag samples permits estimation of an
oob density, less prone to overfit, which can provide
fitting statistics (ISE, KL divergence):

Conclusion
Piecewise linear copulas are handy models since the
copula constraints have a nice expression for them.
Moreover, fitting piecewise linear distribution
function as trees is quite fast. However, the
constraints in the weights reduce the degree of
freedom, forcing us to use multidimensional splits,
making the model harder to fit. Finaly, the CORT
esitmator can easily be bagged, boosted, cross-
validated, etc.
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