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Multivariate Gamma convolutions classes Gd ,n and Gd

Recall: Cumulant generating function: K (t) = ln
(
E
(
e〈t,X 〉

))
.

Definition (Multivariate Thorin Classes1)

X ∼ Gd ,n(α, s)⇔ K (t) = −
∑n

i=1 αi ln (1− 〈si , t〉)
X ∼ Gd(ν)⇔ K (t) = −

∫
ln (1− 〈s, t〉) ν(∂s).

Property

G1 is closed w.r.t (independent) sums and products of random variables !

Example

All gammas, log-Normals, Paretos, α-stables, and sums and/or products of these are in G1.

No estimation procedures currently avaliables.

1Lennart Bondesson. “On Univariate and Bivariate Generalized Gamma Convolutions”. en. In: Journal of Statistical Planning and Inference 139.11 (Nov. 2009), pp. 3759–3765.

issn: 03783758.
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Motivation: interpretability of Gd ,n models

X ∈ Gd ,n follows an additive risk-factor structure: there exists gamma random variables G1, ...Gn such

that: X1

...

Xd

 =

s1,1 ... ... s1,n

... ... ... ...

sd ,1 ... ... sd ,n

 ·
G1

...

Gn

 (i) For all i ∈ 1, ..., n, Gi ∼ G1,1(αi , 1)

(ii) G1, ...,Gn are independent.

Since si ,j can always be zero, by increasing n (typically n >> d) and using the infinite divisibility, we

can approach any marginal in G1, and we have a wide variety of dependence structures (asymmetry, tail

dependency, etc.).
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A generalized moment problem : Miles, Furman and Kuznetsov

Miles, Furman and Kuznetsov2 exhibit in the univariate case a moment problem for the Thorin

measure. A multivariate analogue of their train of thoughts might be the following:

For X ∼ Gd (ν), K (t) = −
∫

ln (1− 〈s, t〉) ν(∂s). Derive i times on t to obtain:

κi ,t = (|i | − 1)!

∫
s i

(1− 〈s, t〉)|i |
ν(∂s)

The substitution x = s
1−〈s,t〉 ⇐⇒ s = x

1+〈x ,t〉 gives: ξi =
∫

∆d (−t)

x i ξ (∂x), which can be seen as a

d-variate generalized moment problem on the (−t)-simplex.

Solving this moment problem for any t (e.g. −1) provides a Gd parametrization corresponding to the

shifted cumulants κi ,t .

2Justin Miles, Edward Furman, and Alexey Kuznetsov. “Risk Aggregation: A General Approach via the Class of Generalized Gamma Convolutions”. In: Variance (2019).
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Unfortunately, no solution

Generalized moment problems have solvers through Lassere’s hierarchy of SDPs, see Helton & Nie3. To

even obtain a solution, the input data needs to be inside the cone of moments.

(i) The cumulants κi ,t needs to come from a true Gd distribution so that ξ is in the cone of moments
(300 digits of tanh-sinh integration per moment if d = 1 according to MFK, probably more as d increase)

(ii) For empirical cumulants, no way to define a coherent loss: Should we take a Pareto front ? Give more

weight to smaller moments ?

A least square approach could work for inexact cumulants, but we do not have a way to weight the

objectives. Also this breaks Lassere’s hierachy simplicity..

=⇒ We need another approach.

3J. William Helton and Jiawang Nie. “A Semidefinite Approach for Truncated K-Moment Problems”. en. In: arXiv:1105.0410 [math] (Sept. 2012), Jiawang Nie. “The

A-Truncated K-Moment Problem”. en. In: arXiv:1210.6930 [math] (Oct. 2012), Didier Henrion and Jérôme Malick. “Projection Methods in Conic Optimization”. en. In:

Handbook on Semidefinite, Conic and Polynomial Optimization. Ed. by Miguel F. Anjos and Jean B. Lasserre. Vol. 166. Boston, MA: Springer US, 2012, pp. 565–600. isbn:

978-1-4614-0768-3 978-1-4614-0769-0.
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The orthonormal Laguerre basis of L2(Rd
+)

Definition (Laguerre basis, see Comte4, Mabon5 and Dussap6)

For all p ∈ Nd , ϕp(x) =
d∏

i=1
ϕpi (xi ) where ϕp(x) =

√
2

p∑
k=0

(p
k

) (−2x)k

k! e−x .

These functions from an orthonormal basis of L2(Rd
+).

Therefore, every density f that is square-integrable can be expended as :

f (x) =
∑
p∈Nd

apϕp(x) where ap =

∫
ϕp(x)f (x)∂x

Integrated square error loss: L(α, s) =
∑
k≤m

(âk − ak(α, s))2

4Fabienne Comte and Valentine Genon-Catalot. “Adaptive Laguerre Density Estimation for Mixed Poisson Models”. en. In: Electronic Journal of Statistics 9.1 (2015),

pp. 1113–1149. issn: 1935-7524.

5Gwennaëlle Mabon. “Adaptive Deconvolution on the Non-Negative Real Line: Adaptive Deconvolution on R+”. en. In: Scandinavian Journal of Statistics 44.3 (Sept. 2017),

pp. 707–740. issn: 03036898.

6Florian Dussap. “Anisotropic Multivariate Deconvolution Using Projection on the Laguerre Basis”. In: (2020).
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Computing densities of Gd ,n models: (α, s) 7−→ κ←→ µ←→ a

Algorithm 1: Laguerre coefficients of Gd ,n(α, s) random vectors

Input: Shapes α ∈ Rd
+, scales s ∈Mn,d (R+), and truncation threshold m ∈ Nd

Result: Laguerre coefficients (ak )k≤mof the Gd,n (α, s) density

Compute the simplex version of the scales xi = si
1+|si |

for all i ∈ 1, ..., n.

Let κ0 = −
n∑

i=1
αi ln (1− |xi |) and a0 = µ0 = exp (κ0)

foreach 0 6= k ≤ m do
Let ak = µk = 0, d be the index of the first ki that is non-zero, p = k and set pd = pd − 1.

Let κk = (|k| − 1)!
n∑

i=1
αix

k
i

foreach l ≤ p do
Set µk += (µl ) (κk−l )

(
p
l

)
according to efficient Faà di Bruno’s algorithm from Miattoa

Set ak += µl
(
k
l

) (−2)|l|

l !

end

Set ak += µk
(−2)|k|

k!

end

a =
√

2
d
a

Return a

aFilippo M. Miatto. “Recursive Multivariate Derivatives of $eˆ{f(X 1,\dots, X n)}$ of Arbitrary Order”. en. In: arXiv:1911.11722 [cs, math] (Nov. 2019).
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Analysis of the loss: The ε-w.b. condition

Definition (ε-well-behaved Gd ,n(α, s))

G1,n(α, s) is ε-w.b. ⇐⇒ |α| > 1 and s ∈] ε
2+ε ,

2+ε
ε [n.

Gd ,n(α, s) is ε-w.b. ⇐⇒ [Technical, useful but boring definition]

Property (well-behaved Gd ,n(α, s))

Gd ,n(α, s) is w.b. ⇐⇒ |α| > 1 and ∀I ⊆ {1, . . . , n} such that
∑

i∈I αi >
∑

i /∈I αi , Ker(sI ) = {0}.

Example (Simple w.b. examples)

As soon as |ν| = |α| > 1, the following are w.b. :

(i) All univariate gamma convolution

(ii) All Gd ,n with independent marginals and all invertible linear transformation of them.

(iii) All finite convolution of well-behaved gamma convolutions.
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Analysis of the loss: Uniform exponential bound

Property (Exponential decay of Laguerre coefficients)

For any ε′ > 0 and any dimension d , ∃B(d , ε′) ∈ ]0,+∞[, such that Laguerre coefficients (ak)k∈Nd of

any d-variate ε-well-behaved gamma convolution, ε > ε′, verify:

|ak | ≤ B(d , ε′)(1 + ε′)−|k|.

Implication: The ISE loss L(α, s) =
∑
k≤m

(âk − ak(α, s))2 produces consistent estimators of (α, s).

Proofs leverage analytics combinatorics is several variables on the function R = exp ◦ K ◦ h, which

happens to be the generating function of Laguerre coefficients, where h is a componentwise Möbius

transform.
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Remark on implementation and complexity

We need to minimize a quadratic loss on the coefficients computed through Algorithm 1.

Therefore, our loss is:

Combinatorial =⇒ Arbitrary precision

Highly recursive =⇒ Compiled code =⇒ Julia

Highly non-convex =⇒ Global optimization

Our package ThorinDistributions.jl7, available on github, implements this loss efficiently.

7Oskar Laverny. lrnv/ThorinDistributions.jl: ThorinDistributions.jl v0.1. Version v0.1. Mar. 2021. doi: 10.5281/zenodo.4644109. url:

https://doi.org/10.5281/zenodo.4644109.

10/15

https://doi.org/10.5281/zenodo.4644109
https://doi.org/10.5281/zenodo.4644109


Crunching numbers on Loss-Alae: the dataset
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Crunching numbers on Loss-Alae: Results for several numbers of gammas
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Crunching numbers on Loss-Alae: Results for n = 20
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Drawbacks of the approach and potential solutions

The total number of coefficients to compute is
∏d

i=1(mi + 1). This is quite unpractical when d gets

large, and therefore restricts the use of the algorithm to d < 5 or 6 to have a performant procedure.

However, there is a way out of the curse: If Xi ∼ G1,ni (αi , si ), denoting

Nd
n =

{
p ∈ Nd : ∀i , 0 ≤ pi ≤ ni

}
and N =

d∏
i=1

(ni + 1) its cardinal, any multivariate gamma

convolutions with these marginals is a {Gd ,N(a,S)} such that:

(i) S =
{

(s1,i1 , ..., sd ,id ) : ∀i ∈ Nd
n

}
, with si ,0 = 0 for all i .

(ii) a ∈ RNd
n

+ and for all i , j ,
∑

p∈Nd
n

ap1pi=j = αi ,j . (this constraint is linear).

Last, for a given constant c to be chosen, 〈c ,X 〉 ∼ G1,N (a, {〈c , s〉 : s ∈ S}) .

Estimating 〈c ,X 〉 conditionally on the marginals is therefore enough.
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Conclusion

(i) The univariate Thorin class is wide: LN, Pareto, α-stable, (some) Weibull, ...

(ii) The Multivariate analogue provides an asymmetrical dependence structure which include tail

dependency, and can take a lot of different shapes.

(iii) Deconvolution is a hard inverse problem, and estimation of these distributions is complicated.

(iv) The final additive risk-factor model gives easy interpretation of parameters and easy aggregation

schemes.

(v) A better approach for high dimensional cases might be possible (working on it).

Details and other illustrated applications are available in our paper8 and Julia package repo9.

Thanks !

8Oskar Laverny, Esterina Masiello, Véronique Maume-Deschamps, and Didier Rullière. Estimation of multivariate generalized gamma convolutions through Laguerre expansions.

2021. arXiv: 2103.03200 [math.ST].

9Oskar Laverny. lrnv/ThorinDistributions.jl: ThorinDistributions.jl v0.1. Version v0.1. Mar. 2021. doi: 10.5281/zenodo.4644109. url:

https://doi.org/10.5281/zenodo.4644109.
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