Estimation of multivariate generalized gamma convolutions through Laguerre expansions

The beauty of multivariate Thorin classes Accepted at EJS

O. Laverny ^{1,3} E. Masiello ¹ V. Maume-Deschamps ¹ D. Rullière ³ October 22, 2021

¹ Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Lyon, France

² Mines Saint-Etienne, UMR CNRS 6158, LIMOS, Saint-etienne, France

³ SCOR SE

Table of contents

- 1. Multivariate Gamma convolutions classes $\mathcal{G}_{d,n}$ and \mathcal{G}_{d} , motivations
- 2. A generalized moment problem with no solution
- 3. The orthonormal Laguerre basis of $L_2(\mathbb{R}^d_+)$
- 4. Remark on implementation and complexity
- 5. Crunching numbers on Loss-Alae
- 6. Drawbacks of the approach and potential solutions
- 7. Conclusion

Recall: Cumulant generating function: $\mathcal{K}(t) = \ln \left(\mathbb{E} \left(e^{\langle t, X \rangle} \right) \right)$.

Definition (Multivariate Thorin Classes¹)

$$oldsymbol{X} \sim \mathcal{G}_{d,n}(oldsymbol{lpha},oldsymbol{s}) \Leftrightarrow \mathcal{K}(oldsymbol{t}) = -\sum_{i=1}^{n} lpha_i \ln (1 - \langle oldsymbol{s}_i,oldsymbol{t}
angle)$$

 $oldsymbol{X} \sim \mathcal{G}_d(
u) \Leftrightarrow \mathcal{K}(oldsymbol{t}) = -\int \ln (1 - \langle oldsymbol{s},oldsymbol{t}
angle)
u(\partial oldsymbol{s}).$

Property

 \mathcal{G}_1 is closed w.r.t (independent) sums and products of random variables !

Example

All gammas, log-Normals, Paretos, α -stables, and sums and/or products of these are in \mathcal{G}_1 .

No estimation procedures currently availables.

¹Lennart Bondesson. "On Univariate and Bivariate Generalized Gamma Convolutions". en. In: Journal of Statistical Planning and Inference 139.11 (Nov. 2009), pp. 3759–3765. ISSN: 03783758.

 $X \in \mathcal{G}_{d,n}$ follows an additive risk-factor structure: there exists gamma random variables $G_1, ..., G_n$ such that:

$$\begin{pmatrix} X_1 \\ \dots \\ X_d \end{pmatrix} = \begin{pmatrix} s_{1,1} & \dots & \dots & s_{1,n} \\ \dots & \dots & \dots & \dots \\ s_{d,1} & \dots & \dots & s_{d,n} \end{pmatrix} \cdot \begin{pmatrix} G_1 \\ \dots \\ G_n \end{pmatrix}$$
(i) For all $i \in 1, \dots, n, \ G_i \sim \mathcal{G}_{1,1}(\alpha_i, 1)$ (ii) G_1, \dots, G_n are independent.

Since $s_{i,j}$ can always be zero, by increasing n (typically n >> d) and using the infinite divisibility, we can approach any marginal in \mathcal{G}_1 , and we have a wide variety of dependence structures (asymmetry, tail dependency, etc.).

Miles, Furman and Kuznetsov² exhibit in the univariate case a moment problem for the Thorin measure. A multivariate analogue of their train of thoughts might be the following:

For $\mathbf{X} \sim \mathcal{G}_d(\nu)$, $\mathcal{K}(\mathbf{t}) = -\int \ln(1 - \langle \mathbf{s}, \mathbf{t} \rangle) \nu(\partial \mathbf{s})$. Derive \mathbf{i} times on \mathbf{t} to obtain:

$$\kappa_{m{i},m{t}} = (|m{i}|-1)! \int rac{m{s}^{m{i}}}{(1-\langlem{s},m{t}
angle)^{|m{i}|}}
u(\partialm{s})$$

The substitution $\mathbf{x} = \frac{\mathbf{s}}{1 - \langle \mathbf{s}, \mathbf{t} \rangle} \iff \mathbf{s} = \frac{\mathbf{x}}{1 + \langle \mathbf{x}, \mathbf{t} \rangle}$ gives: $\xi_i = \int_{\Delta_d(-\mathbf{t})} \mathbf{x}^i \xi(\partial \mathbf{x})$, which can be seen as a *d*-variate generalized moment problem on the $(-\mathbf{t})$ -simplex.

Solving this moment problem for any t (e.g. -1) provides a \mathcal{G}_d parametrization corresponding to the shifted cumulants $\kappa_{i,t}$.

² Justin Miles, Edward Furman, and Alexey Kuznetsov. "Risk Aggregation: A General Approach via the Class of Generalized Gamma Convolutions". In: Variance (2019).

Generalized moment problems have solvers through Lassere's hierarchy of SDPs, see Helton & Nie³. To even obtain a solution, the input data needs to be inside the cone of moments.

- (i) The cumulants $\kappa_{i,t}$ needs to come from a true \mathcal{G}_d distribution so that $\boldsymbol{\xi}$ is in the cone of moments (300 digits of tanh-sinh integration per moment if d = 1 according to MFK, probably more as d increase)
- (ii) For empirical cumulants, no way to define a coherent loss: Should we take a Pareto front ? Give more weight to smaller moments ?

A least square approach could work for inexact cumulants, but we do not have a way to weight the objectives. Also this breaks Lassere's hierachy simplicity..

 \implies We need another approach.

³ J. William Helton and Jiawang Nie. "A Semidefinite Approach for Truncated K-Moment Problems". en. In: *arXiv:1105.0410 [math]* (Sept. 2012), Jiawang Nie. "The A-Truncated K-Moment Problem". en. In: *arXiv:1210.6930 [math]* (Oct. 2012), Didier Henrion and Jérôme Malick. "Projection Methods in Conic Optimization". en. In: *Handbook on Semidefinite, Conic and Polynomial Optimization*. Ed. by Miguel F. Anjos and Jean B. Lasserre. Vol. 166. Boston, MA: Springer US, 2012, pp. 565–600. ISBN: 978-1-4614-0768-3 978-1-4614-0769-0.

The orthonormal Laguerre basis of $L_2(\mathbb{R}^d_+)$

Definition (Laguerre basis, see Comte⁴, Mabon⁵ and Dussap⁶)

For all
$$\boldsymbol{p} \in \mathbb{N}^d$$
, $\varphi_{\boldsymbol{p}}(\boldsymbol{x}) = \prod_{i=1}^d \varphi_{p_i}(x_i)$ where $\varphi_{\boldsymbol{p}}(\boldsymbol{x}) = \sqrt{2} \sum_{k=0}^p {p \choose k} \frac{(-2x)^k}{k!} e^{-x}$.

These functions from an orthonormal basis of $L_2(\mathbb{R}^d_+)$.

Therefore, every density f that is square-integrable can be expended as :

$$f(\mathbf{x}) = \sum_{\mathbf{p} \in \mathbb{N}^d} a_{\mathbf{p}} \varphi_{\mathbf{p}}(\mathbf{x})$$
 where $a_{\mathbf{p}} = \int \varphi_{\mathbf{p}}(\mathbf{x}) f(\mathbf{x}) \partial \mathbf{x}$

Integrated square error loss: $L(\alpha, s) = \sum_{k \leq m} (\widehat{a_k} - a_k(\alpha, s))^2$

⁴Fabienne Comte and Valentine Genon-Catalot. "Adaptive Laguerre Density Estimation for Mixed Poisson Models". en. In: *Electronic Journal of Statistics* 9.1 (2015), pp. 1113–1149. ISSN: 1935-7524.

⁵Gwennaëlle Mabon. "Adaptive Deconvolution on the Non-Negative Real Line: Adaptive Deconvolution on R+". en. In: *Scandinavian Journal of Statistics* 44.3 (Sept. 2017), pp. 707–740. ISSN: 03036898.

⁶Florian Dussap. "Anisotropic Multivariate Deconvolution Using Projection on the Laguerre Basis". In: (2020).

Computing densities of $\mathcal{G}_{d,n}$ models: $(\alpha, s) \longmapsto \kappa \longleftrightarrow \mu \longleftrightarrow a$

Algorithm 1: Laguerre coefficients of $\mathcal{G}_{d,n}(\alpha, s)$ random vectors

Input: Shapes $\alpha \in \mathbb{R}^d_+$, scales $s \in \mathcal{M}_{n,d}(\mathbb{R}_+)$, and truncation threshold $m \in \mathbb{N}^d$ **Result:** Laguerre coefficients $(a_k)_{k \le m}$ of the $\mathcal{G}_{d,n}(\alpha, s)$ density Compute the simplex version of the scales $\mathbf{x}_i = \frac{\mathbf{s}_i}{1+|\mathbf{s}_i|}$ for all $i \in 1, ..., n$. Let $\kappa_{\mathbf{0}} = -\sum_{i=1}^{n} \alpha_{i} \ln \left(1 - |\mathbf{x}_{i}|\right)$ and $a_{\mathbf{0}} = \mu_{\mathbf{0}} = \exp \left(\kappa_{\mathbf{0}}\right)$ foreach $0 \neq k \leq m$ do Let $a_k = \mu_k = 0$, d be the index of the first k_i that is non-zero, p = k and set $p_d = p_d - 1$. Let $\kappa_{\boldsymbol{k}} = (|\boldsymbol{k}| - 1)! \sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i^{\boldsymbol{k}}$ foreach I < p do Set $\mu_{k} += (\mu_{l}) (\kappa_{k-l}) {p \choose l}$ according to efficient Faà di Bruno's algorithm from Miatto^a Set $a_k += \mu_I {\binom{k}{l}} \frac{(-2)^{|l|}}{l!}$ end Set $a_k += \mu_k \frac{(-2)^{|k|}}{|k|}$ end $a = \sqrt{2}^d a$ Return a

^aFilippo M. Miatto. "Recursive Multivariate Derivatives of \$e^{f(X_1,\dots, X_n)}\$ of Arbitrary Order". en. In: arXiv:1911.11722 [cs, math] (Nov. 2019).

Definition (ε -well-behaved $\mathcal{G}_{d,n}(\alpha, s)$)

$$\mathcal{G}_{1,n}(\alpha, \boldsymbol{s}) ext{ is } arepsilon ext{-w.b.} \iff |lpha| > 1 ext{ and } \boldsymbol{s} \in]_{\overline{2+arepsilon}}, rac{2+arepsilon}{arepsilon} [^n.$$

 $\mathcal{G}_{d,n}(lpha, m{s})$ is arepsilon-w.b. \iff [Technical, useful but boring definition]

Property (well-behaved $\mathcal{G}_{d,n}(\alpha, s)$)

 $\mathcal{G}_{d,n}(\alpha, \mathbf{s})$ is w.b. $\iff |\alpha| > 1$ and $\forall l \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} \alpha_i > \sum_{i \notin I} \alpha_i$, $Ker(\mathbf{s}_l) = \{\mathbf{0}\}$.

Example (Simple w.b. examples)

As soon as $|
u| = |\alpha| > 1$, the following are w.b. :

- (i) All univariate gamma convolution
- (ii) All $\mathcal{G}_{d,n}$ with independent marginals and all invertible linear transformation of them.
- (iii) All finite convolution of well-behaved gamma convolutions.

Property (Exponential decay of Laguerre coefficients)

For any $\varepsilon' > 0$ and any dimension d, $\exists B(d, \varepsilon') \in]0, +\infty[$, such that Laguerre coefficients $(a_k)_{k \in \mathbb{N}^d}$ of any *d*-variate ε -well-behaved gamma convolution, $\varepsilon > \varepsilon'$, verify:

 $|a_{\mathbf{k}}| \leq B(d,\varepsilon')(1+\varepsilon')^{-|\mathbf{k}|}.$

Implication: The ISE loss $L(\alpha, s) = \sum_{k \le m} (\widehat{a_k} - a_k(\alpha, s))^2$ produces consistent estimators of (α, s) .

Proofs leverage analytics combinatorics is several variables on the function $R = \exp \circ K \circ \mathbf{h}$, which happens to be the generating function of Laguerre coefficients, where \mathbf{h} is a componentwise Möbius transform.

We need to minimize a quadratic loss on the coefficients computed through Algorithm 1.

Therefore, our loss is:

Combinatorial	\Longrightarrow	Arbitrary precision		
Highly recursive	\Longrightarrow	Compiled code	\implies	Julia
Highly non-convex	\implies	Global optimization		

Our package ThorinDistributions.jl⁷, available on github, implements this loss efficiently.

⁷Oskar Laverny. Innv/ThorinDistributions.jl: ThorinDistributions.jl v0.1. Version v0.1. Mar. 2021. DOI: 10.5281/zenodo.4644109. URL: https://doi.org/10.5281/zenodo.4644109.

Crunching numbers on Loss-Alae: the dataset

11/15

Crunching numbers on Loss-Alae: Results for several numbers of gammas

Crunching numbers on Loss-Alae: Results for n = 20

13/15

The total number of coefficients to compute is $\prod_{i=1}^{d} (m_i + 1)$. This is quite unpractical when d gets large, and therefore restricts the use of the algorithm to d < 5 or 6 to have a performant procedure.

However, there is a way out of the curse: If $X_i \sim \mathcal{G}_{1,n_i}(\alpha_i, \mathbf{s}_i)$, denoting $\mathbb{N}_{\mathbf{n}}^d = \{ \mathbf{p} \in \mathbb{N}^d : \forall i, 0 \le p_i \le n_i \}$ and $N = \prod_{i=1}^d (n_i + 1)$ its cardinal, any multivariate gamma convolutions with these marginals is a $\{\mathcal{G}_{d,N}(\mathbf{a}, \mathbf{S})\}$ such that:

(i)
$$\boldsymbol{S} = \{(\boldsymbol{s}_{1,i_1},...,\boldsymbol{s}_{d,i_d}): \forall \boldsymbol{i} \in \mathbb{N}_{\boldsymbol{n}}^d\}$$
, with $\boldsymbol{s}_{i,0} = 0$ for all i .
(ii) $\boldsymbol{a} \in \mathbb{R}_+^{\mathbb{N}_{\boldsymbol{n}}^d}$ and for all $i, j, \sum_{\boldsymbol{p} \in \mathbb{N}_{\boldsymbol{n}}^d} a_{\boldsymbol{p}} \mathbf{1}_{p_i = j} = \alpha_{i,j}$. (this constraint is linear).

Last, for a given constant c to be chosen, $\langle c, X \rangle \sim \mathcal{G}_{1,N}(a, \{\langle c, s \rangle : s \in S\})$.

Estimating $\langle c, X \rangle$ conditionally on the marginals is therefore enough.

Conclusion

- (i) The univariate Thorin class is wide: LN, Pareto, α -stable, (some) Weibull, ...
- (ii) The Multivariate analogue provides an asymmetrical dependence structure which include tail dependency, and can take a lot of different shapes.
- (iii) Deconvolution is a hard inverse problem, and estimation of these distributions is complicated.
- (iv) The final additive risk-factor model gives easy interpretation of parameters and easy aggregation schemes.
- (v) A better approach for high dimensional cases might be possible (working on it).

Details and other illustrated applications are available in our paper⁸ and Julia package repo⁹. Thanks !

⁹Oskar Laverny. Inv/ThorinDistributions.jl: ThorinDistributions.jl v0.1. Version v0.1. Mar. 2021. DOI: 10.5281/zenodo.4644109. URL: https://doi.org/10.5281/zenodo.4644109.

⁸Oskar Laverny, Esterina Masiello, Véronique Maume-Deschamps, and Didier Rullière. *Estimation of multivariate generalized gamma convolutions through Laguerre expansions*. 2021. arXiv: 2103.03200 [math.ST].