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Multivariate generalized gamma

convolutions



Construction of the multivariate Thorin class

Consider that X is a univariate gamma distribution with shape α ∈ R+ and scale

s ∈ R+. By definition, the moment generating function of X is

M(t) := E
(
etX
)
= (1− ts)−α .
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Construction of the multivariate Thorin class

Consider that X is a univariate gamma distribution with shape α ∈ R+ and scale

s ∈ R+. By definition, the cumulant generating function of X is

K (t) := lnE
(
etX
)
= −α ln (1− ts) .
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Construction of the multivariate Thorin class

Consider that X is a multivariate gamma distribution with shape α ∈ R+ and scales

s ∈ Rd
+. By definition, the cumulant generating function of X is

K (t) := lnE
(
e⟨t,X ⟩

)
= −α ln (1− ⟨t, s⟩) .

Warn: This distribution is comonotonous. We have X = (s1X , ..., sdX ) with X a

gamma distribution with shape α and unit scale.
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Construction of the multivariate Thorin class

Consider that X is a multivariate gamma convolution with shapes α ∈ Rn
+ and scales

s ∈ Rn×d
+ . By definition, the cumulant generating function of X is

K (t) := lnE
(
e⟨t,X ⟩

)
= −

n∑
i=1

αi ln (1− ⟨t, si ⟩) .

Warn: This distribution can be absolutely continuous w.r.t. λ.
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Construction of the multivariate Thorin class

Consider that X is a multivariate generalized gamma convolution with Thorin

measure ν ∈ M+

(
Rd
+

)
. By definition, the cumulant generating function of X is

K (t) := lnE
(
e⟨t,X ⟩

)
= −

∫
ln (1− ⟨t, si ⟩) ν(∂s).

Good: This distribution can also be absolutely continuous w.r.t. λ, under mild

integration conditions1 on ν

We denote X ∼ Gd(ν), and Gd is called the d-variate Thorin class.

1Victor Pérez-Abreu and Robert Stelzer. “A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-Valued Generalised

Gamma Convolutions”. en. In: arXiv:1201.1461 [math, stat] (Jan. 2012).
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The d-variate Thorin class Gd

Definition (Multivariate Thorin Classes2)

∀ν ∈ M+(Rd
+), X ∼ Gd(ν) ⇔ K (t) := lnE

(
e⟨t,X ⟩) = −

∫
ln (1− ⟨s, t⟩) ν(∂s).

Prop: Gd is closed w.r.t (independent) sums and products, and contains many

interesting marginals...

2Lennart Bondesson. “On Univariate and Bivariate Generalized Gamma Convolutions”. en. In: Journal of Statistical Planning and Inference 139.11

(Nov. 2009), pp. 3759–3765. issn: 03783758.
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A convolutive representation (and motivations)

Note that in the finitely atomic case, say X ∼ Gd(
∑n

i=1 αiδsi ), for some α ∈ Rn
+ and

s ∈ Rn×d
+ , there exists independent Gamma random variables Gi ∼ G1(αiδ1), all having

unit scale, such that:

X1

...

Xd

 =

s1,1 ... ... s1,n

... ... ... ...

sd ,1 ... ... sd ,n

 ·

G1

...

Gn

 ,

Of course, we mostly consider n ≫ d (underdetermined case) with a sparse s matrix.

Goal: Estimate ν from observations of the random vector X .

Pb: It is a deconvolution problem, which is numerically hard.

Motivation: Risk factor intepretation and need for infinite divisibility...
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Shifted moments, shifted cumulants

and Laguerre coefficients



Estimation idea: orthonormal expansion of the density.

The idea is the following:

(i) Find a suitable orthonormal basis of Rd
+

(ii) Expand the density into this basis, with an appropriate truncature.

(iii) Compare theoretical and empirical coeficients to fit the parameters.

Bingo: The Laguerre basis3 provides usable closed form expression for many usefull

quantities here.

3Florian Dussap. “Anisotropic multivariate deconvolution using projection on the Laguerre basis”. In: Journal of Statistical Planning and Inference

215 (2021), pp. 23–46.
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Laguerre coefficients a and shifted moments µ

Definition (Laguerre basis of L2(Rd
+))

∀p ∈ Nd , φp(x) =
√
2
d ∑

k≤p

(p
k
) (−2x)k

k! e−|x | ; f (x) =
∑

k∈Nd

akφk(x)

=⇒ ak = ⟨φk , f ⟩ = E (φk(X )) =
√
2
d ∑

k≤p

(
p
k

)
(−2)|k|

k!
E
(
X ke−|X |

)

Denote µi := E
(
X ke−|X |). Let I ⊂ Nd an increasing index set, a = (ai )i∈I and

µ = (µi )i∈I .

Bijection: The relationship between a and µ is linear. We encode this relationship

through a (lower-triangular, invertible) matrix A ∈ R|I |×|I | such that

a = Aµ and µ = A−1a.
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Thorin moments τ

Rem: Since µi := E
(
X ke−⟨1,X ⟩), the mgf of the random vector writes:

M(t) = E
(
e⟨t,X ⟩

)
=
∑
k∈Nd

µk
(t − 1)k

k!
,

Definition (Thorin moments τ )

K (t) = lnM(t) :=
∑
k∈Nd

τk (|k | − 1)!
(t − 1)k

k!
.

Bijection: There exists a function B, based on Bell polynomials, s.t.

µ = B(τ ) and τ = B−1(µ).
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Estimators of a,µ and τ

Data: x = (x1, ..., xN) ∈ RN×d
+ an N-sample of i.i.d. random vectors.

Definition (Monte-Carlo estimators)

µ̂(x) = (µ̂k(x))k∈I =

(
1

N

N∑
i=1

xk
i e

−|xi |

)
k∈I

τ̂ (x) = (τ̂k(x))k∈I = B−1 (µ̂(x)) .

â(x) = (âk(x))k∈I = Aµ̂(x) = AB(τ̂ (x)),

Rem: biais, cv ?
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Back to gamma convolutions...

Definition (Thorin moments of a Gamma convolution)

We denote the first Thorin moments of the Gd(ν) distribution by:

τ (ν) = (τk(ν))k∈I .

Property

Denoting δx the Dirac measure at x, it holds:

(i) τ0(δs) = − ln (1 + |s|) and τk(δs) =
(

s
1+|s|

)|k|
for k ̸= 0, k ∈ Nd .

(ii) τ (ν) =
∫
τ (δs)ν(ds), where the equality and integration are intended componen-

twise.

Rem: τ are called Thorin moments for a reason. We are dealing with a multivariate

moment problem which might not have a solution....
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Direct minimisation of the Laguerre

loss.



The Laguerre loss

We use the integrated square error between densities, projected in the Laguerre basis:

L(x , ν) = ∥â(x)− AB(τ (ν))∥22.

Theorem (Consistency4)

If x is drawn from an ϵ-well-behaved density f ∈ Gd , any well-behaved estimator ν⋆

such that L(x , ν⋆) a.s−−−−→
N→∞

0 ensures that

∥f − fν⋆∥22
a.s−−−−→

N→∞
I→Nd

0.

4Oskar Laverny, Esterina Masiello, Véronique Maume-Deschamps, and Didier Rullière. “Estimation of multivariate generalized gamma convolutions

through Laguerre expansions.”. In: Electronic Journal of Statistics 15.2 (2021), pp. 5158–5202. doi: 10.1214/21-EJS1918. url:

https://doi.org/10.1214/21-EJS1918.
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Dimensionality issues

The loss: L(x , ν) = ∥â(x)− AB(τ (ν))∥22.

Problem: L is too costly to work with when d gets large...

The vectors â(x) and AB(τ (ν)) each consist of |I | coefficients. If, e.g.,

I =
{
k ∈ Nd , |k | ≤ m

}
is isotropic, the number of coefficents to compute is given by

D(m, d) =
m∑
i=1

(
i + d − 1

d − 1

)
.

which is exponentially increasing in d and therefore unusable.
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Better approach via random

projections.



An approximated loss through random projections...

Through a first-order taylor expansion of the function AB, we define:

L̂(x , ν) = ∥τ̂ (x)− τ (ν)∥2∇(x)

where ∇(x) is a jacobian of the function AB, taken in τ̂ (x). Then, through a

univariate projection and re-integration we define:

L̃(x , ν) : =
∫
[0,1]d

L̂
(
⟨c , x⟩, ν⟨c⟩

)
dc

=

∫
[0,1]d

∥τ̂ (⟨c , x⟩)− τ (ν⟨c⟩)∥2∇(⟨c,x⟩) dc ,

where

ν⟨c⟩(A) = ν
({

x ∈ Rd
+ : ⟨c , x⟩ ∈ A

})
∀A ⊆ R+.
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... that is still consistent.

Theorem (Consistency of L̃.)
Let x be drawn from a well-behaved density f ∼ Gd(ν). The global minimizer

ν̃ := argmin
ν :Gd (ν)w .b.

L̃(x , ν)

ensures that

∥f − fν̃∥22
a.s−−−−→

N→∞
I→Nd

0.

The proof leverages the theory of Grassmannian cubatures and some considerations

about unisolvant sets for polynomials of bounded degree.

Question: Can we and will we reach a global minimizer ? Recall that the loss is clearly

not convex and has a myriad of local minimas...
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Reframing the loss

Let F = L2([0, 1]
d ,Rm

+) be the space of square integrable functions from [0, 1]d to Rm
+.

We consider the functional ψ defined as:

ψ :


Rd
+ −→ F

s 7−→ ψ(s) :

{
[0, 1]d −→ Rm

+

c 7−→ τ
(
δ⟨s,c⟩

)
.

We also consider, as our target,

ψx :

{
[0, 1]d −→ Rm

+

c 7−→ τ̂ (⟨c , x⟩)
∈ F .
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Reframing the loss

We endow F with the norm ∥·∥x defined as:

∀ψ ∈ F , ∥ψ∥2x =

∫
[0,1]d

∥ψ(c)∥2∇(⟨c,x⟩)dc ,

This allow us to write our loss as:

L̃(x , ν) = ∥ψx −
∫
ψ(s)ν(ds)∥2x ,

which shows that our loss is convex in
∫
ψ(s)ν(ds), but clearly not convex in the

atoms and weights of an n-atomic measure ν. However Chizat5 applies !

5Lenaic Chizat. “Sparse optimization on measures with over-parameterized gradient descent”. In: Mathematical Programming (2021), pp. 1–46.
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Fréchet-differentiability and gradient flow.

Property

The Fréchet differential of L̃(x , ·) at ν ∈ M(Rd
+) is represented by the function

L̃′
ν :


Rd
+ −→ R

s 7−→ 2⟨ψx −
∫
ψ(s)ν(ds), ψ(s)⟩x .

Definition (Gradient flow6)

A gradient flow of L̃(x , ·) is an absolutely continuous curve (νt)t≥0 in the space

M(Rd
+) that satisfies

∂

∂t
νt = −∇L̃(x , νt)

Where the gradient ∇L̃(x , νt) is taken w.r.t. a given conic metric...
6Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science &

Business Media, 2005. 16/24



A convergence result for the gradient flow.

Theorem (Global convergence of the gradient flow)

For ρ ∈ M+(Rd
+) an absolutely continuous reference measure such that log ρ’s

density is Lipschitz, for any initial measure ν0 ∈ M+(Rd
+), there exists a constant C,

dependent on the characteristics of the problem, such that if W∞(ν0, ρ) ≤ C ,

∃ ν∞ ∈ argmin
ν∈M+(Rd

+)

L̃(x , ν) such that W∞(νt , ν∞) −−−→
t→∞

0.

Furthermore, when ν0 = ρ, we achieve a precision ϵ, i.e., W∞(νt , ν∞) ≤ ϵ, provided

the number of iteration is t = O (− log(ϵ)).

This result directly leverages Chizat’s results. For general accelerated convex methods,

W∞(νt , ν∞) ≤ ϵ is achieved for t = O
(
ϵ−1/d

)
only, see7 for more details.

7Yohann de Castro, Sébastien Gadat, Clément Marteau, and Cathy Maugis. “SuperMix: Sparse Regularization for Mixtures”. In: The annals of

Statistics 49.3 (2021), pp. 1779–1809.
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Takeaway: Initialize the Thorin measure all over Rd+1
+ , with a lot of atoms, to achieve

global convergence.

Bonus: Same result with a lasso penalty on the measure, which is perfect for what we

need (penalises the abbundance of sources), via a hyperparameter λ > 0 and a loss

L̃(x , ν) + λ|ν|.

Any wanted hyperparameter searching method (with its associated cost) could be used

to find λ.
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Examples



Estimation procedure

Algorithm 1: Estimation of Thorin measures via stochastic gradient descent on L̃.
Input: A dataset x ∈ RN×d , a number of Gammas n ∈ N, a precision parameter m ∈ N, a

number of iterations T ∈ N, and a learning rate η ∈ R+

Result: A Thorin measure νT that approximates the dataset x as a multivariate Gamma

convolution.

Estimate standard deviations σi = std(xi ) for all i ∈ 1, ...d , and standardize the marginals

by dividing xi by σi .
Initialize a measure ν0 ∈ M+(Rd

+) with n atoms and corresponding weights, chosen

randomly through Gaussian noise.

foreach t ∈ 0, ...,T − 1 do
Choose a random direction c ∈ [0, 1]d .

Compute the gradient g of L̂(⟨c , x⟩, νt,⟨c⟩) with respect to νt (details missing).

Let νt+1 = νt − ηg
end

Rescale νT by σ1, ...σd .

Return νT
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Four-variate simulated data

For U1,U2,U3 independent U([0, 1]) distributions and Y1, ...,Y4 independent

log-Normal(0,1) distributions, we let the random vector X be defined by:

X =

(
Y1, Y2 + U1Y

2
1 , Y3 + U3Y1, Y4 + Y

1+
U3
3

1

)
,

We simulate a dataset x ∈ R10000×4 of N = 10000 i.i.d. samples from X , and we ran

the algorithm on it with 100 atoms.

We ended up with only 17 atoms at a 1e − 16 threshold on weights.

20/24



Four-variate simulated data
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2000-dimensionnal multiplicative dataset

Let d = 2000, let G ∼ G1(δ1), H ∼ G1(2δ 1
2
), and Z1, ...,Zd ∼ N (0, 1) be all

independent random variables, and let α1, .., αd be fixed parameters in [0, 1] (uniformly

chosen). Construct the random vector X = (X1, ...,Xd) as:

X =
(
G eZi H1+2αi

)
i∈1,...,d

.

We simulate a dataset x ∈ R1500×2000 of N = 1500 i.i.d. samples from X .

We ran our algorithm with n = 500 atoms, and ended up with only 36 meaningfull

ones.
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2000-dimensionnal multiplicative dataset
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Conclusion

Main takeways:

(i) Multivariate generalized gamma convolutions are fexible semi-parametric

structures

(ii) They simplify divisions of positive random variables (in the infinite divisibility

sense) by making this process parametrical

(iii) Estimating them can be reduced to a non-sparse d-variate moment problem,

which can be very hard to solve.

(iv) Random projections allow us to make the gradient cost essentially linear in the

dimension, and still converges to a globally minimizing Thorin measure.

(v) We achieve sparse Thorin measure from dense proposals.

(vi) The (OSS) Julia package ThorinDistributions.jl provides an implementation.

Thanks !
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