Estimation of high dimensional gamma convolutions through random projections.

Thorin measures and Grassmannians cubatures...

O. Laverny ^{1,2} April 20, 2021

¹ Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Lyon, France

 2 SCOR SE

- 1. Multivariate generalized gamma convolutions
- 2. Shifted moments, shifted cumulants and Laguerre coefficients
- 3. Direct minimisation of the Laguerre loss.
- 4. Better approach via random projections.
- 5. Examples

Multivariate generalized gamma convolutions

Consider that X is a univariate gamma distribution with shape $\alpha \in \mathbb{R}_+$ and scale $s \in \mathbb{R}_+$. By definition, the moment generating function of X is

$$M(t) := \mathbb{E}\left(e^{tX}\right) = (1-ts)^{-\alpha}.$$

Consider that X is a univariate gamma distribution with shape $\alpha \in \mathbb{R}_+$ and scale $s \in \mathbb{R}_+$. By definition, the cumulant generating function of X is

$$K(t) := \ln \mathbb{E}\left(e^{tX}\right) = -\alpha \ln \left(1 - ts\right).$$

Consider that X is a multivariate gamma distribution with shape $\alpha \in \mathbb{R}_+$ and scales $s \in \mathbb{R}_+^d$. By definition, the cumulant generating function of X is

$$\mathcal{K}(\boldsymbol{t}) := \ln \mathbb{E}\left(e^{\langle \boldsymbol{t}, \boldsymbol{X}
angle}
ight) = -lpha \ln \left(1 - \langle \boldsymbol{t}, \boldsymbol{s}
angle
ight).$$

Warn: This distribution is comonotonous. We have $\mathbf{X} = (s_1X, ..., s_dX)$ with X a gamma distribution with shape α and unit scale.

Consider that X is a multivariate gamma convolution with shapes $\alpha \in \mathbb{R}^n_+$ and scales $s \in \mathbb{R}^{n \times d}_+$. By definition, the cumulant generating function of X is

$$\mathcal{K}(\boldsymbol{t}) := \ln \mathbb{E}\left(e^{\langle \boldsymbol{t}, \boldsymbol{X} \rangle}\right) = -\sum_{i=1}^{n} \alpha_{i} \ln\left(1 - \langle \boldsymbol{t}, \boldsymbol{s}_{i} \rangle\right).$$

Warn: This distribution can be absolutely continuous w.r.t. λ .

Consider that **X** is a multivariate generalized gamma convolution with Thorin measure $\nu \in \mathcal{M}_+(\mathbb{R}^d_+)$. By definition, the cumulant generating function of X is

$$\mathcal{K}(\boldsymbol{t}) := \ln \mathbb{E}\left(e^{\langle \boldsymbol{t}, \boldsymbol{X}
angle}
ight) = -\int \ln\left(1 - \langle \boldsymbol{t}, \boldsymbol{s}_i
angle\right)
u(\partial \boldsymbol{s}).$$

Good: This distribution can also be absolutely continuous w.r.t. λ , under mild integration conditions¹ on ν

We denote $\mathbf{X} \sim \mathcal{G}_d(\nu)$, and \mathcal{G}_d is called the d-variate Thorin class.

¹Victor Pérez-Abreu and Robert Stelzer. "A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-Valued Generalised Gamma Convolutions". en. In: arXiv:1201.1461 [math, stat] (Jan. 2012).

Definition (Multivariate Thorin Classes²)

 $\forall
u \in \mathcal{M}_+(\mathbb{R}^d_+), \ \mathbf{X} \sim \mathcal{G}_d(
u) \Leftrightarrow \mathbf{K}(\mathbf{t}) := \ln \mathbb{E}\left(e^{\langle \mathbf{t}, \mathbf{X}
angle}\right) = -\int \ln\left(1 - \langle \mathbf{s}, \mathbf{t}
angle\right)
u(\partial \mathbf{s}).$

Prop: \mathcal{G}_d is closed w.r.t (independent) sums and products, and contains many interesting marginals...

²Lennart Bondesson. "On Univariate and Bivariate Generalized Gamma Convolutions". en. In: *Journal of Statistical Planning and Inference* 139.11 (Nov. 2009), pp. 3759–3765. ISSN: 03783758.

Note that in the finitely atomic case, say $\mathbf{X} \sim \mathcal{G}_d(\sum_{i=1}^n \alpha_i \delta_{\mathbf{s}_i})$, for some $\alpha \in \mathbb{R}^n_+$ and $\mathbf{s} \in \mathbb{R}^{n \times d}_+$, there exists independent Gamma random variables $G_i \sim \mathcal{G}_1(\alpha_i \delta_1)$, all having unit scale, such that:

$$\begin{pmatrix} X_1 \\ \dots \\ X_d \end{pmatrix} = \begin{pmatrix} s_{1,1} & \dots & \dots & s_{1,n} \\ \dots & \dots & \dots & \dots \\ s_{d,1} & \dots & \dots & s_{d,n} \end{pmatrix} \cdot \begin{pmatrix} G_1 \\ \dots \\ G_n \end{pmatrix},$$

Of course, we mostly consider $n \gg d$ (underdetermined case) with a sparse s matrix. **Goal:** Estimate ν from observations of the random vector X. **Pb:** It is a deconvolution problem, which is numerically hard. *Motivation: Risk factor integretation and need for infinite divisibility...*

Shifted moments, shifted cumulants and Laguerre coefficients

The idea is the following:

- (i) Find a suitable orthonormal basis of \mathbb{R}^d_+
- (ii) Expand the density into this basis, with an appropriate truncature.
- (iii) Compare theoretical and empirical coeficients to fit the parameters.

Bingo: The Laguerre basis³ provides usable closed form expression for many usefull quantities here.

³Florian Dussap. "Anisotropic multivariate deconvolution using projection on the Laguerre basis". In: Journal of Statistical Planning and Inference 215 (2021), pp. 23–46.

Laguerre coefficients a and shifted moments μ

Definition (Laguerre basis of
$$L_2(\mathbb{R}^d_+)$$
)
 $\forall \mathbf{p} \in \mathbb{N}^d, \ \varphi_{\mathbf{p}}(\mathbf{x}) = \sqrt{2}^d \sum_{k \leq \mathbf{p}} {p \choose k} \frac{(-2\mathbf{x})^k}{k!} e^{-|\mathbf{x}|} ; \qquad f(\mathbf{x}) = \sum_{k \in \mathbb{N}^d} a_k \varphi_k(\mathbf{x})$
 $\implies a_k = \langle \varphi_k, f \rangle = \mathbb{E} \left(\varphi_k(\mathbf{X}) \right) = \sqrt{2}^d \sum_{k \leq \mathbf{p}} {p \choose k} \frac{(-2)^{|\mathbf{k}|}}{k!} \mathbb{E} \left(X^k e^{-|\mathbf{X}|} \right)$

Denote $\mu_i := \mathbb{E} \left(X^k e^{-|\mathbf{X}|} \right)$. Let $I \subset \mathbb{N}^d$ an increasing index set, $\mathbf{a} = (a_i)_{i \in I}$ and $\mu = (\mu_i)_{i \in I}$.

Bijection: The relationship between a and μ is linear. We encode this relationship through a (lower-triangular, invertible) matrix $A \in \mathbb{R}^{|I| \times |I|}$ such that

$$\pmb{a}=\pmb{A}\mu$$
 and $\pmb{\mu}=\pmb{A}^{-1}\pmb{a}$.

Thorin moments au

Rem: Since $\mu_i := \mathbb{E} \left(\boldsymbol{X}^{\boldsymbol{k}} e^{-\langle \boldsymbol{1}, \boldsymbol{X} \rangle} \right)$, the mgf of the random vector writes:

$$M(t) = \mathbb{E}\left(e^{\langle t, X \rangle}\right) = \sum_{k \in \mathbb{N}^d} \mu_k \, \frac{(t-1)^k}{k!},$$

Definition (Thorin moments τ)

$$\mathcal{K}(\boldsymbol{t}) = \ln \mathcal{M}(\boldsymbol{t}) := \sum_{\boldsymbol{k} \in \mathbb{N}^d} \tau_{\boldsymbol{k}} \left(|\boldsymbol{k}| - 1 \right)! \frac{(\boldsymbol{t} - 1)^{\boldsymbol{k}}}{\boldsymbol{k}!}.$$

Bijection: There exists a function **B**, based on Bell polynomials, s.t.

$$\mu = oldsymbol{B}(au)$$
 and $au = oldsymbol{B}^{-1}(\mu).$

Data: $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^{N \times d}_+$ an *N*-sample of i.i.d. random vectors.

Definition (Monte-Carlo estimators)

$$\hat{\mu}(\mathbf{x}) = (\widehat{\mu_{k}}(\mathbf{x}))_{k \in I} = \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}^{k} e^{-|\mathbf{x}_{i}|}\right)_{k \in I}$$
$$\hat{\tau}(\mathbf{x}) = (\widehat{\tau}_{k}(\mathbf{x}))_{k \in I} = \mathbf{B}^{-1}(\widehat{\mu}(\mathbf{x})).$$
$$\hat{\mathbf{a}}(\mathbf{x}) = (\widehat{a}_{k}(\mathbf{x}))_{k \in I} = \mathbf{A}\widehat{\mu}(\mathbf{x}) = \mathbf{A}\mathbf{B}(\widehat{\tau}(\mathbf{x})),$$

Rem: biais, cv ?

Back to gamma convolutions...

Definition (Thorin moments of a Gamma convolution)

We denote the first Thorin moments of the $\mathcal{G}_d(\nu)$ distribution by:

 $\boldsymbol{\tau}(\boldsymbol{\nu}) = (\tau_{\boldsymbol{k}}(\boldsymbol{\nu}))_{\boldsymbol{k}\in \boldsymbol{I}}.$

Property

Denoting δ_x the Dirac measure at x, it holds:

(i)
$$\tau_0(\delta_s) = -\ln(1+|s|)$$
 and $\tau_k(\delta_s) = \left(\frac{s}{1+|s|}\right)^{|k|}$ for $k \neq 0$, $k \in \mathbb{N}^d$.

(ii) $\tau(\nu) = \int \tau(\delta_s)\nu(ds)$, where the equality and integration are intended componentwise.

Rem: τ are called Thorin moments for a reason. We are dealing with a multivariate moment problem *which might not have a solution...*

Direct minimisation of the Laguerre loss.

We use the integrated square error between densities, projected in the Laguerre basis:

$$\mathcal{L}(\boldsymbol{x},
u) = \|\hat{\boldsymbol{a}}(\boldsymbol{x}) - \boldsymbol{A}\boldsymbol{B}(\boldsymbol{ au}(
u))\|_2^2$$

Theorem (Consistency⁴)

If **x** is drawn from an ϵ -well-behaved density $f \in \mathcal{G}_d$, any well-behaved estimator ν^* such that $\mathcal{L}(\mathbf{x}, \nu^*) \xrightarrow[N \to \infty]{a.s} 0$ ensures that

$$\|f - f_{\nu^{\star}}\|_2^2 \xrightarrow[I \to \mathbb{N}^d]{a.s} 0.$$

⁴Oskar Laverny, Esterina Masiello, Véronique Maume-Deschamps, and Didier Rullière. "Estimation of multivariate generalized gamma convolutions through Laguerre expansions.". In: *Electronic Journal of Statistics* 15.2 (2021), pp. 5158–5202. DOI: 10.1214/21-EJS1918. URL: https://doi.org/10.1214/21-EJS1918.

The loss:
$$\mathcal{L}(\boldsymbol{x}, \nu) = \|\hat{\boldsymbol{a}}(\boldsymbol{x}) - \boldsymbol{A}\boldsymbol{B}(\boldsymbol{\tau}(\nu))\|_{2}^{2}$$
.

Problem: \mathcal{L} is too costly to work with when *d* gets large...

The vectors $\hat{a}(x)$ and $AB(\tau(\nu))$ each consist of |I| coefficients. If, e.g., $I = \{ \mathbf{k} \in \mathbb{N}^d, |\mathbf{k}| \le m \}$ is isotropic, the number of coefficients to compute is given by

$$D(m,d) = \sum_{i=1}^m \binom{i+d-1}{d-1}.$$

which is exponentially increasing in d and therefore unusable.

Better approach via random projections.

An approximated loss through random projections...

Through a first-order taylor expansion of the function **AB**, we define:

$$\widehat{\mathcal{L}}(\pmb{x},
u) = \| \hat{\pmb{ au}}(\pmb{x}) - \pmb{ au}(
u) \|_{
abla(\pmb{x})}^2$$

where $\nabla(\mathbf{x})$ is a jacobian of the function AB, taken in $\hat{\tau}(\mathbf{x})$. Then, through a univariate projection and re-integration we define:

$$egin{aligned} \widetilde{\mathcal{L}}(oldsymbol{x},
u) &:= \int_{[0,1]^d} \widehat{\mathcal{L}}\left(\langleoldsymbol{c},oldsymbol{x}
angle,
u_{\langleoldsymbol{c}
angle}
ight) doldsymbol{c} \ &= \int_{[0,1]^d} \| \hat{oldsymbol{ au}}(\langleoldsymbol{c},oldsymbol{x}
angle) - oldsymbol{ au}(
u_{\langleoldsymbol{c}
angle}) \|_{
abla(\langleoldsymbol{c},oldsymbol{x}
angle)} doldsymbol{c}, \end{aligned}$$

where

$$\nu_{\langle \boldsymbol{c} \rangle}(A) = \nu\left(\left\{\boldsymbol{x} \in \mathbb{R}^d_+ : \langle \boldsymbol{c}, \boldsymbol{x} \rangle \in A\right\}\right) \ \forall A \subseteq \mathbb{R}_+.$$

... that is still consistent.

Theorem (Consistency of $\widetilde{\mathcal{L}}$.)

Let **x** be drawn from a well-behaved density $f \sim \mathcal{G}_d(\nu)$. The global minimizer

$$\widetilde{\nu} := \arg\min_{\nu: \mathcal{G}_d(\nu) \text{ w.b.}} \widetilde{\mathcal{L}}(\mathbf{x}, \nu)$$

ensures that

$$\|f - f_{\tilde{\nu}}\|_2^2 \xrightarrow[N \to \infty]{N \to \infty} 0.$$

The proof leverages the theory of Grassmannian cubatures and some considerations about unisolvant sets for polynomials of bounded degree.

Question: Can we and will we reach a global minimizer ? Recall that the loss is clearly not convex and has a myriad of local minimas...

Let $\mathcal{F} = L_2([0,1]^d, \mathbb{R}^m_+)$ be the space of square integrable functions from $[0,1]^d$ to \mathbb{R}^m_+ . We consider the functional ψ defined as:

$$\psi \colon \begin{cases} \mathbb{R}^{d}_{+} \longrightarrow \mathcal{F} \\ \boldsymbol{s} \longmapsto \psi(\boldsymbol{s}) \colon \begin{cases} [0,1]^{d} \longrightarrow \mathbb{R}^{m}_{+} \\ \boldsymbol{c} \longmapsto \boldsymbol{\tau} \left(\delta_{\langle \boldsymbol{s}, \boldsymbol{c} \rangle} \right). \end{cases}$$

We also consider, as our target,

$$\psi_{\mathbf{x}} \colon \begin{cases} [0,1]^d \longrightarrow \mathbb{R}^m_+ \\ \boldsymbol{c} \longmapsto \hat{\boldsymbol{\tau}}(\langle \boldsymbol{c}, \boldsymbol{x} \rangle) \end{cases} \in \mathcal{F}.$$

We endow \mathcal{F} with the norm $\|\cdot\|_{\mathbf{x}}$ defined as:

$$\forall \psi \in \mathcal{F}, \ \|\psi\|_{\mathbf{x}}^2 = \int_{[0,1]^d} \|\psi(\mathbf{c})\|_{
abla(\langle \mathbf{c}, \mathbf{x}
angle)}^2 d\mathbf{c},$$

This allow us to write our loss as:

$$\widetilde{\mathcal{L}}(\mathbf{x}, \nu) = \|\psi_{\mathbf{x}} - \int \psi(\mathbf{s}) \nu(d\mathbf{s})\|_{\mathbf{x}}^2,$$

which shows that our loss is convex in $\int \psi(s)\nu(ds)$, but clearly not convex in the atoms and weights of an *n*-atomic measure ν . However Chizat⁵ applies !

⁵Lenaic Chizat. "Sparse optimization on measures with over-parameterized gradient descent". In: Mathematical Programming (2021), pp. 1–46.

Fréchet-differentiability and gradient flow.

Property

The Fréchet differential of $\widetilde{\mathcal{L}}(\mathbf{x}, \cdot)$ at $\nu \in \mathcal{M}(\mathbb{R}^d_+)$ is represented by the function

$$\widetilde{\mathcal{L}}'_{\nu} \colon \begin{cases} \mathbb{R}^{d}_{+} \longrightarrow \mathbb{R} \\ \boldsymbol{s} \longmapsto 2 \langle \psi_{\boldsymbol{x}} - \int \psi(\boldsymbol{s}) \nu(d\boldsymbol{s}), \psi(\boldsymbol{s}) \rangle_{\boldsymbol{x}}. \end{cases}$$

Definition (Gradient flow⁶)

A gradient flow of $\widetilde{\mathcal{L}}(\mathbf{x}, \cdot)$ is an absolutely continuous curve $(\nu_t)_{t \ge 0}$ in the space $\mathcal{M}(\mathbb{R}^d_+)$ that satisfies

$$\frac{\partial}{\partial t}\nu_t = -\nabla \widetilde{\mathcal{L}}(\mathbf{x}, \nu_t)$$

Where the gradient $\nabla \mathcal{L}(\mathbf{x}, \nu_t)$ is taken w.r.t. a given conic metric...

⁶Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & 16/2

Theorem (Global convergence of the gradient flow)

For $\rho \in \mathcal{M}_+(\mathbb{R}^d_+)$ an absolutely continuous reference measure such that $\log \rho$'s density is Lipschitz, for any initial measure $\nu_0 \in \mathcal{M}_+(\mathbb{R}^d_+)$, there exists a constant C, dependent on the characteristics of the problem, such that if $W_{\infty}(\nu_0, \rho) \leq C$,

$$\exists \nu_{\infty} \in \underset{\nu \in \mathcal{M}_{+}(\mathbb{R}^{d}_{+})}{\operatorname{arg\,min}} \widetilde{\mathcal{L}}(\boldsymbol{x},\nu) \text{ such that } W_{\infty}(\nu_{t},\nu_{\infty}) \xrightarrow[t \to \infty]{} 0.$$

Furthermore, when $\nu_0 = \rho$, we achieve a precision ϵ , i.e., $W_{\infty}(\nu_t, \nu_{\infty}) \leq \epsilon$, provided the number of iteration is $t = O(-\log(\epsilon))$.

This result directly leverages Chizat's results. For general accelerated convex methods, $W_{\infty}(\nu_t, \nu_{\infty}) \leq \epsilon$ is achieved for $t = \mathcal{O}(\epsilon^{-1/d})$ only, see⁷ for more details.

⁷Yohann de Castro, Sébastien Gadat, Clément Marteau, and Cathy Maugis. "SuperMix: Sparse Regularization for Mixtures". In: *The annals of Statistics* 49.3 (2021), pp. 1779–1809.

Takeaway: Initialize the Thorin measure all over \mathbb{R}^{d+1}_+ , with a lot of atoms, to achieve global convergence.

Bonus: Same result with a lasso penalty on the measure, which is perfect for what we need (penalises the abbundance of sources), via a hyperparameter $\lambda > 0$ and a loss

 $\widetilde{\mathcal{L}}(\boldsymbol{x},\nu) + \lambda |\nu|.$

Any wanted hyperparameter searching method (with its associated cost) could be used to find λ .

Examples

Estimation procedure

Algorithm 1: Estimation of Thorin measures via stochastic gradient descent on \mathcal{L} .

- **Input:** A dataset $\mathbf{x} \in \mathbb{R}^{N \times d}$, a number of Gammas $n \in \mathbb{N}$, a precision parameter $m \in \mathbb{N}$, a number of iterations $T \in \mathbb{N}$, and a learning rate $\eta \in \mathbb{R}_+$
- **Result:** A Thorin measure ν_T that approximates the dataset x as a multivariate Gamma convolution.
- Estimate standard deviations $\sigma_i = \text{std}(\mathbf{x}_i)$ for all $i \in 1, ...d$, and standardize the marginals by dividing \mathbf{x}_i by σ_i .
- Initialize a measure $\nu_0 \in \mathcal{M}_+(\mathbb{R}^d_+)$ with *n* atoms and corresponding weights, chosen randomly through Gaussian noise.

```
foreach t \in 0, ..., T-1 do
```

```
Choose a random direction \boldsymbol{c} \in [0, 1]^d.
Compute the gradient \boldsymbol{g} of \widehat{\mathcal{L}}(\langle \boldsymbol{c}, \boldsymbol{x} \rangle, \nu_{t, \langle \boldsymbol{c} \rangle}) with respect to \nu_t (details missing).
```

```
Let \nu_{t+1} = \nu_t - \eta \boldsymbol{g}
```

end

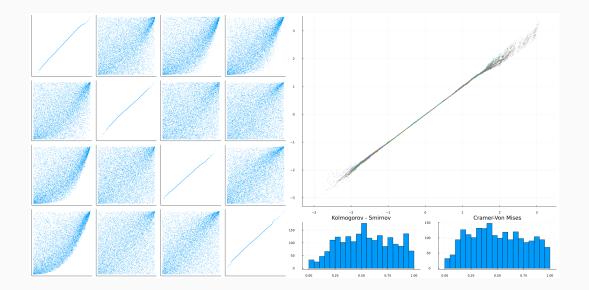
Rescale ν_T by $\sigma_1, ... \sigma_d$. Return ν_T For U_1, U_2, U_3 independent $\mathcal{U}([0, 1])$ distributions and $Y_1, ..., Y_4$ independent log-Normal(0,1) distributions, we let the random vector \boldsymbol{X} be defined by:

$$\boldsymbol{X} = \left(Y_1, Y_2 + U_1 Y_1^2, Y_3 + U_3 Y_1, Y_4 + Y_1^{1 + \frac{U_3}{3}}\right),$$

We simulate a dataset $\mathbf{x} \in \mathbb{R}^{10000 \times 4}$ of N = 10000 i.i.d. samples from \mathbf{X} , and we ran the algorithm on it with 100 atoms.

We ended up with only 17 atoms at a 1e - 16 threshold on weights.

Four-variate simulated data



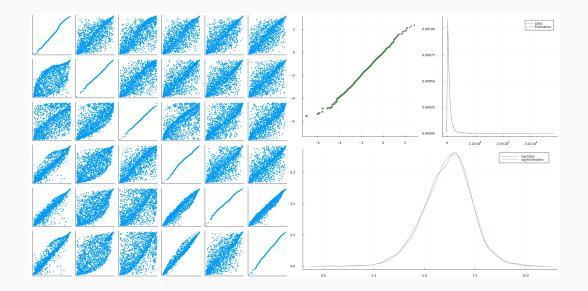
Let d = 2000, let $G \sim \mathcal{G}_1(\delta_1)$, $H \sim \mathcal{G}_1(2\delta_{\frac{1}{2}})$, and $Z_1, ..., Z_d \sim \mathcal{N}(0, 1)$ be all independent random variables, and let $\alpha_1, ..., \alpha_d$ be fixed parameters in [0, 1] (uniformly chosen). Construct the random vector $\boldsymbol{X} = (X_1, ..., X_d)$ as:

$$\boldsymbol{X} = \left(G e^{Z_i} H^{1+2\alpha_i} \right)_{i \in 1,...,d}$$

We simulate a dataset $\mathbf{x} \in \mathbb{R}^{1500 \times 2000}$ of N = 1500 i.i.d. samples from \mathbf{X} .

We ran our algorithm with n = 500 atoms, and ended up with only 36 meaningfull ones.

2000-dimensionnal multiplicative dataset



Conclusion

Main takeways:

- (i) Multivariate generalized gamma convolutions are fexible semi-parametric structures
- (ii) They simplify divisions of positive random variables (in the infinite divisibility sense) by making this process parametrical
- (iii) Estimating them can be reduced to a non-sparse *d*-variate moment problem, which can be very hard to solve.
- (iv) Random projections allow us to make the gradient cost essentially linear in the dimension, and still converges to a globally minimizing Thorin measure.
- (v) We achieve sparse Thorin measure from dense proposals.
- (vi) The (OSS) Julia package ThorinDistributions.jl provides an implementation.

Thanks !