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Local moment matching problem



Local moment matching problem

Definition (Local moment matching problem on R+)
Setup: Let X1, ...Xn be a n-sample of the positive random variable X , and B1, ...BJ a finite partition of
R+, k ∈ NJ a vector of integers.
Observations: We only observe the following local moments:

π̂ =

{
π̂j =

1
N

N∑
i=1

1Xi∈Bj
: j ∈ 1, ..., J

}
and

µ̂ =

{
µ̂j ,k =

1
N

N∑
i=1

X k
i 1Xi∈Bj

: j ∈ 1, ...J, k ∈ 1, ..., kj

}
.

Goal: Estimate the distribution of X from (π̂, µ̂).

This kind of summarized information may be due to confidentiality issues (e.g. GDPR). See Lambert1 for a
similar problem on a bounded support.

1Philippe Lambert. “Nonparametric density estimation and risk quantification from tabulated sample moments”. In: Insurance: Mathematics and Economics 108
(2023), pp. 177–189.
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An exemple

Example (LogNormal simulated example)

This local moment problem is drawn from N = 750 observations of a LogNormal(0, 0.5). In this example,
the three first lines give estimated boxed moments. The fourth line is a little more involved: it prescribes a
Value-At-Risk bJ−1 and a Tail-Value-at-Risk µ̂J−1,1 at the quantile level 1 − π̂4. This data structure is
classical when modeling insurance losses, which are usually divided into attritional and large losses.

j [bj−1, bj [ nj kj πj µ̂j ,1 µ̂j ,2 µ̂j ,3 µ̂j ,4

1 [0.000, 0.969[ 375 4 0.500 0.341 0.249 0.191 0.151
2 [0.969, 1.877[ 300 4 0.400 0.535 0.742 1.065 1.581
3 [1.877, 3.058[ 67 4 0.089 0.197 0.442 1.002 2.305
4 [3.058,∞[ 8 1 0.011 0.038
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Data loglikelihood

Definition (Theoretical moments)
From the (unknown) distribution of the r.v. X , we can construct :

π = {πj = P (X ∈ Bj) : j ∈ 1, ..., J} and

µ =
{
µj ,k = E

(
X k1X∈Bj

)
: j ∈ 1, ...J, k ∈ 1, ..., kj

}
Σ =

{
Σ(j ,k),(i ,m) = µj ,k+m1j=i − µj ,kµi ,m

}
Therefore:

(i) Nπ̂ ∼ Multinomial(π,N)

(ii) Conditionally on π̂, due to CLT, µ̂ ∼ Normal(µ,Σ/N) when N → ∞.

Hence, the (approximate) loglikelihood of the model is given by:

ℓ0(π,µ,Σ) =
{
π̂′ log(π)

}
+

{
−1

2
log |Σ| − 1

2
∥µ− µ̂∥2

Σ

}
, (1)
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Regularized Erlang Mixtures



The class of Erlang mixtures

Definition (Mixtures of Gammas)

A positive real random variable X is said to be MixedGamma(ν, θ) distributed, with mixing probability
measure ν ∈ M+(R) and scale s ∈ R+, iff it has density

f (x) =

∫ ∞

0

xα−1e−x/θ

Γ(α)θα
ν(dα).

When Supp(ν) ⊆ N, that is e.g. ν =
∑

i∈N ωiδi , we say that X ∼ MixedErlang(ω, θ).

Theorem (Tijms2)
The set of Erlang Mixtures is dense in the set of probability distributions over R+.

Note: There are multivariate extensions of the result, see Theorem 2.1 in Lee & Lin3.

Remark

For X ∼ MixedGamma(ν, θ), π,µ and Σ are easily computed. Indeed,

E
(
X k1X∈[a,b[

)
= θk

∫
Γ(α+ k)

Γ(α)

(
γ

(
b

θ
, α+ k

)
− γ

(a
θ
, α+ k

))
ν(dα), (2)

with these implicit definitions, we setup ℓ(ω, θ) = ℓ0(π,µ,Σ).
2Henk C Tijms. Stochastic models: an algorithmic approach. Vol. 303. John Wiley & Sons Incorporated, 1994.
3Simon Lee and X Sheldon Lin. “Modeling Dependent Risks with Multivariate Erlang Mixtures”. In: Astin Bulletin 42.1 (2012), pp. 153–180. 5/12



Erlang Mixtures models often require regularisation

Erlang Mixtures have been used as modeling tools for insurence purposes for a long time, see (among
others) pioneering work from Lee & Lin4. However, they have a spiky behavior, which drives us toward
roughness penalisation.

Definition (Roughness penalty from Gui, Huang & Lin5)

P̃enr (λ, f ) =
λ

2

∫
f (r)(x)2dx =

λ

2
θ−(2r+1)ω′P̃rω,

where P̃r is a fixed positive semidefinite dense matrix with elements

P̃r ,i,j =
r∑

k=0

r∑
ℓ=0

cr ,kcr ,ℓ
Γ(i + j − k − ℓ− 1)
Γ(i − k)Γ(j − ℓ)

2−(i+j−k−ℓ−1)1i−k>0,j−l>0,

where cr ,k are finite difference coefficients of order r : c0,0 = c1,0 = 1 & cr ,k = (cr−1,k − cr−1,k−1)1k∈{0,...r}.

Issue A: The matrix P̃r is dense which is numerically cumbersome.
Issue B: We cannot calibrate λ without cross-validation, which is impossible in our settings.
4Simon C. K. Lee and X. Sheldon Lin. “Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions”. In: North American Actuarial Journal 14.1
(Jan. 2010), pp. 107–130. ISSN: 1092-0277, 2325-0453. DOI: 10.1080/10920277.2010.10597580.
5Wenyong Gui, Rongtan Huang, and X. Sheldon Lin. “Fitting Multivariate Erlang Mixtures to Data: A Roughness Penalty Approach”. In: Journal of Computational
and Applied Mathematics 386 (Apr. 2021), p. 113216. ISSN: 03770427. DOI: 10.1016/j.cam.2020.113216.
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A better regularisation through P-splines.

Idea: Penalise finite differences of ν instead of f .
Definition (Penalisation of the sequence of modes)

For f ∼ MixedErlang(ω, θ), the sequence of modes of the Erlang densities is y =
(
yi =

i ie−i

i!

)
i∈N

. The

corresponding difference matrix is denoted by Dr , such that

Dr ,k,l = cr ,l−kyl1l−k≤r .

Note: The matrix Dr is sparse!

Thus, Drω are r-order finite differences of the sequence of modes. The corresponding penalty writes

λ

2
∥Drω∥2

2.

Bayesian P-splines interpretation: This is equivalent as setting a prior Drω|λ ∼ Normal(0, λI ).
Assuming furthermore that we assign a (uninformative, high variance) Gamma(aλ, bλ) prior on λ, the final
penalization is

Penr (λ,ω) =
1
2
{
(n − r) log(λ) + λ∥Drω∥2

2
}
+
{
(aλ − 1) log(λ)− λb−1

λ

}
,
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Numerical scheme via Laplace
approximations



Laplace approximation to optimize λ

The final complete llh is given by ℓ(ω, θ, λ) = ℓ(ω, θ)− Penr (λ,ω).

The a posteriori marginal loglikelihood for λ can be easily expressed as ℓ(λ) = ℓ(ω, θ, λ)− ℓ(ω, θ|λ).
Definition (Hessian notations)

H(ω, θ) = − ∂2

∂2(ω, θ)
ℓ(ω, θ)

Pr = − ∂

∂λ

∂2

∂2(ω, θ)
Penr (λ,ω) =

(
−D ′

rDr 0
0 0

)

H(ω, θ, λ) = − ∂2

∂2(ω, θ)
ℓ(ω, θ, λ) = H(ω, θ)− λPr .

Property (λ’s estimating equation through Laplace approximation)

Using a Laplace approximation given by ℓ(ω, θ|λ) ≈ 1
2 log|H(ω, θ, λ)|, we have

∂

∂λ
ℓ(λ) =

1
2

{
n+1∑
i=1

ηi
1 − ληi

− ∥D ′
rω∥2

2 −
n − r − 2aλ + 2

λ
− 2b−1

λ

}
(3)

where η1, ..., ηn+1 are eigenvalues of the matrix H(ω, θ)−1Pr
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Proposed estimation scheme

The algorithm jumps between the following two steps:

(i) Update (ω, θ) = argmin ℓ(ω, θ, λ) at the current value of λ,

(ii) Update λ by minimizing ℓ(λ) at the current value of (ω, θ).

until a given convergence criterion is met. Our implementation runs until Float64 precision is reached.

Remark: You may interpret the estimating equation for λ as the result of a mixed-effect regression
analysis, see Eilers & Al6,7.

6Paul H. C. Eilers and Brian D. Marx. “Flexible Smoothing with B-splines and Penalties”. In: Statistical Science 11.2 (May 1996). ISSN: 0883-4237. DOI:
10.1214/ss/1038425655.
7Paul H. C. Eilers. “The Truth about the Effective Dimension: The Truth about the Effective Dimension”. In: Statistica Neerlandica 72.3 (Aug. 2018), pp. 201–209.
ISSN: 00390402. DOI: 10.1111/stan.12131.
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Simulated examples



Results on Exemple 1
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A Normal/Beta mixture
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Conclusion



Conclusion

A few take-away points:

(i) The denseness of the class of Erlang mixtures makes it a good approximator for positive random
variables, including multivariate random vectors, under different setups such as censure or truncation.

(ii) The Bayesian interpretation of finite differences roughness penalization, linked to the mixed effects
models, allows for automatic and efficient selection of penalisation parameters without cross-validation.

(iii) Laplace approximation allows to derive confidence intervals without running full blown-up MCMC.

(iv) There is a potential for extension to censure & truncation, multivariate mixed Erlangs, and even other
generic approximators (non-positively supported datasets).

Thanks !
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