Local moment matching with Erlang mixture under automatic roughness penalization

IWSM 2023 @ Dortmund

Oskar Laverny¹ Philippe Lambert^{1,2}

July 17, 2023

¹ Institut de statistiques, biostatistiques et actuariat, Université catholique de Louvain, Louvain-la-Neuve, Belgium

² Institut de Mathématique, Université de Liège, Liège, Belgium.

- 1. Local moment matching problem
- 2. Regularized Erlang Mixtures
- 3. Numerical scheme via Laplace approximations
- 4. Simulated examples
- 5. Conclusion

Local moment matching problem

Definition (Local moment matching problem on \mathbb{R}_+)

Setup: Let $X_1, ..., X_n$ be a *n*-sample of the positive random variable X, and $B_1, ..., B_J$ a finite partition of \mathbb{R}_+ , $\mathbf{k} \in \mathbb{N}^J$ a vector of integers.

Observations: We only observe the following local moments:

$$\hat{\pi} = \left\{ \hat{\pi}_j = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{X_i \in B_j} : j \in 1, ..., J \right\} \text{ and}$$
$$\hat{\mu} = \left\{ \hat{\mu}_{j,k} = \frac{1}{N} \sum_{i=1}^N X_i^k \mathbf{1}_{X_i \in B_j} : j \in 1, ..., J, k \in 1, ..., k_j \right\}.$$

Goal: Estimate the distribution of X from $(\hat{\pi}, \hat{\mu})$.

This kind of summarized information may be due to confidentiality issues (e.g. GDPR). See Lambert¹ for a similar problem on a bounded support.

¹Philippe Lambert. "Nonparametric density estimation and risk quantification from tabulated sample moments". In: Insurance: Mathematics and Economics 108 (2023), pp. 177–189.

Example (LogNormal simulated example)

This local moment problem is drawn from N = 750 observations of a LogNormal(0,0.5). In this example, the three first lines give estimated boxed moments. The fourth line is a little more involved: it prescribes a Value-At-Risk b_{J-1} and a Tail-Value-at-Risk $\hat{\mu}_{J-1,1}$ at the quantile level $1 - \hat{\pi}_4$. This data structure is classical when modeling insurance losses, which are usually divided into *attritional* and *large* losses.

j	$[b_{j-1}, b_j[$	nj	k_j	π_j	$\hat{\mu}_{j,1}$	$\hat{\mu}_{j,2}$	$\hat{\mu}_{j,3}$	$\hat{\mu}_{j,4}$
1	[0.000, 0.969[375	4	0.500	0.341	0.249	0.191	0.151
2	[0.969, 1.877[300	4	0.400	0.535	0.742	1.065	1.581
3	[1.877, 3.058[67	4	0.089	0.197	0.442	1.002	2.305
4	$[3.058,\infty[$	8	1	0.011	0.038			

Data loglikelihood

Definition (Theoretical moments)

From the (unknown) distribution of the r.v. X, we can construct :

$$\pi = \{\pi_j = \mathbb{P} (X \in B_j) : j \in 1, ..., J\} \text{ and}$$
$$\mu = \left\{\mu_{j,k} = \mathbb{E} \left(X^k \mathbb{1}_{X \in B_j}\right) : j \in 1, ..., J, k \in 1, ..., k_j\right\}$$
$$\Sigma = \left\{\Sigma_{(j,k),(i,m)} = \mu_{j,k+m} \mathbb{1}_{j=i} - \mu_{j,k} \mu_{i,m}\right\}$$

Therefore:

- (i) $N\hat{\pi} \sim \texttt{Multinomial}(\pi, N)$
- (ii) Conditionally on $\hat{\pi}$, due to CLT, $\hat{\mu} \sim \texttt{Normal}(\mu, \Sigma/N)$ when $N \to \infty$.

Hence, the (approximate) loglikelihood of the model is given by:

$$\ell_0(\pi, \mu, \Sigma) = \left\{ \hat{\pi}' \log(\pi) \right\} + \left\{ -\frac{1}{2} \log |\Sigma| - \frac{1}{2} \|\mu - \hat{\mu}\|_{\Sigma}^2 \right\},$$
(1)

Regularized Erlang Mixtures

The class of Erlang mixtures

Definition (Mixtures of Gammas)

A positive real random variable X is said to be MixedGamma(ν, θ) distributed, with mixing probability measure $\nu \in \mathcal{M}_+(\mathbb{R})$ and scale $s \in \mathbb{R}_+$, iff it has density

$$f(x) = \int_0^\infty \frac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^\alpha}\nu(d\alpha).$$

When $\operatorname{Supp}(\nu) \subseteq \mathbb{N}$, that is e.g. $\nu = \sum_{i \in \mathbb{N}} \omega_i \delta_i$, we say that $X \sim \operatorname{MixedErlang}(\omega, \theta)$.

Theorem (Tijms²)

The set of Erlang Mixtures is dense in the set of probability distributions over \mathbb{R}_+ .

Note: There are multivariate extensions of the result, see Theorem 2.1 in Lee & Lin^3 .

Remark

For $X \sim \texttt{MixedGamma}(
u, heta), \pi, \mu$ and Σ are easily computed. Indeed,

$$\mathbb{E}\left(X^{k}\mathbb{1}_{X\in[a,b[}\right) = \theta^{k}\int\frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}\left(\gamma\left(\frac{b}{\theta},\alpha+k\right) - \gamma\left(\frac{a}{\theta},\alpha+k\right)\right)\nu(d\alpha),\tag{2}$$

with these implicit definitions, we setup $\ell(\omega, \theta) = \ell_0(\pi, \mu, \Sigma).$

²Henk C Tijms. Stochastic models: an algorithmic approach. Vol. 303. John Wiley & Sons Incorporated, 1994.

³Simon Lee and X Sheldon Lin. "Modeling Dependent Risks with Multivariate Erlang Mixtures". In: Astin Bulletin 42.1 (2012), pp. 153–180.

Erlang Mixtures have been used as modeling tools for insurence purposes for a long time, see (among others) pioneering work from Lee & Lin⁴. However, they have a spiky behavior, which drives us toward roughness penalisation.

Definition (Roughness penalty from Gui, Huang & Lin⁵)

$$\widetilde{\operatorname{Pen}_r}(\lambda, f) = \frac{\lambda}{2} \int f^{(r)}(x)^2 dx = \frac{\lambda}{2} \theta^{-(2r+1)} \omega' \tilde{\boldsymbol{P}}_r \boldsymbol{\omega},$$

where \tilde{P}_r is a fixed positive semidefinite dense matrix with elements

$$\tilde{P}_{r,i,j} = \sum_{k=0}^{r} \sum_{\ell=0}^{r} c_{r,k} c_{r,\ell} \frac{\Gamma(i+j-k-\ell-1)}{\Gamma(i-k)\Gamma(j-\ell)} 2^{-(i+j-k-\ell-1)} \mathbb{1}_{i-k>0,j-l>0}$$

where $c_{r,k}$ are finite difference coefficients of order r: $c_{0,0} = c_{1,0} = 1 \& c_{r,k} = (c_{r-1,k} - c_{r-1,k-1}) \mathbb{1}_{k \in \{0,...r\}}$.

Issue A: The matrix \tilde{P}_r is dense which is numerically cumbersome.

Issue B: We cannot calibrate λ without cross-validation, which is impossible in our settings.

⁴Simon C. K. Lee and X. Sheldon Lin. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions". In: North American Actuarial Journal 14.1 (Jan. 2010), pp. 107–130. ISSN: 1092-0277, 2325-0453. DOI: 10.1080/10920277.2010.10597580.

⁵Wenyong Gui, Rongtan Huang, and X. Sheldon Lin. "Fitting Multivariate Erlang Mixtures to Data: A Roughness Penalty Approach". In: *Journal of Computational and Applied Mathematics* 386 (Apr. 2021), p. 113216. ISSN: 03770427. DOI: 10.1016/j.cam.2020.113216.

A better regularisation through P-splines.

Idea: Penalise finite differences of ν instead of f.

Definition (Penalisation of the sequence of modes)

For $f \sim \text{MixedErlang}(\omega, \theta)$, the sequence of modes of the Erlang densities is $\mathbf{y} = \left(y_i = \frac{i^i e^{-i}}{i!}\right)_{i \in \mathbb{N}}$. The corresponding difference matrix is denoted by \mathbf{D}_r , such that

$$D_{r,k,l} = c_{r,l-k} y_l \mathbb{1}_{l-k \leq r}.$$

Note: The matrix D_r is sparse!

Thus, $D_r\omega$ are r-order finite differences of the sequence of modes. The corresponding penalty writes

$$\frac{\lambda}{2} \|\boldsymbol{D}_{r}\boldsymbol{\omega}\|_{2}^{2}.$$

Bayesian P-splines interpretation: This is equivalent as setting a prior $D_r \omega | \lambda \sim \text{Normal}(0, \lambda I)$. Assuming furthermore that we assign a (uninformative, high variance) $\text{Gamma}(a_{\lambda}, b_{\lambda})$ prior on λ , the final penalization is

$$\operatorname{Pen}_{r}(\lambda, \boldsymbol{\omega}) = \frac{1}{2} \left\{ (n-r) \log(\lambda) + \lambda \| \boldsymbol{D}_{r} \boldsymbol{\omega} \|_{2}^{2} \right\} + \left\{ (a_{\lambda}-1) \log(\lambda) - \lambda b_{\lambda}^{-1} \right\},$$

Numerical scheme via Laplace approximations

Laplace approximation to optimize λ

The final complete IIh is given by $\ell(\omega, \theta, \lambda) = \ell(\omega, \theta) - \operatorname{Pen}_r(\lambda, \omega)$.

The *a posteriori* marginal loglikelihood for λ can be easily expressed as $\ell(\lambda) = \ell(\omega, \theta, \lambda) - \ell(\omega, \theta | \lambda)$.

Definition (Hessian notations)

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{\omega},\boldsymbol{\theta}) &= -\frac{\partial^2}{\partial^2(\boldsymbol{\omega},\boldsymbol{\theta})} \ell(\boldsymbol{\omega},\boldsymbol{\theta}) \\ \boldsymbol{P}_r &= -\frac{\partial}{\partial\lambda} \frac{\partial^2}{\partial^2(\boldsymbol{\omega},\boldsymbol{\theta})} \operatorname{Pen}_r(\lambda,\boldsymbol{\omega}) = \begin{pmatrix} -\boldsymbol{D}_r' \boldsymbol{D}_r & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \\ \boldsymbol{H}(\boldsymbol{\omega},\boldsymbol{\theta},\lambda) &= -\frac{\partial^2}{\partial^2(\boldsymbol{\omega},\boldsymbol{\theta})} \ell(\boldsymbol{\omega},\boldsymbol{\theta},\lambda) = \boldsymbol{H}(\boldsymbol{\omega},\boldsymbol{\theta}) - \lambda \boldsymbol{P}_r. \end{aligned}$$

Property (λ 's estimating equation through Laplace approximation)

Using a Laplace approximation given by $\ell(\boldsymbol{\omega}, \theta | \lambda) \approx \frac{1}{2} \log |\boldsymbol{H}(\boldsymbol{\omega}, \theta, \lambda)|$, we have

$$\frac{\partial}{\partial\lambda}\ell(\lambda) = \frac{1}{2} \left\{ \sum_{i=1}^{n+1} \frac{\eta_i}{1-\lambda\eta_i} - \|\boldsymbol{D}_r'\boldsymbol{\omega}\|_2^2 - \frac{n-r-2a_\lambda+2}{\lambda} - 2b_\lambda^{-1} \right\}$$
(3)

where $\eta_1, ..., \eta_{n+1}$ are eigenvalues of the matrix $H(\omega, \theta)^{-1} P_r$

The algorithm jumps between the following two steps:

- (i) Update $(\boldsymbol{\omega}, \theta) = \arg \min \ell(\boldsymbol{\omega}, \theta, \lambda)$ at the current value of λ ,
- (ii) Update λ by minimizing $\ell(\lambda)$ at the current value of (ω, θ) .

until a given convergence criterion is met. Our implementation runs until Float64 precision is reached.

Remark: You may interpret the estimating equation for λ as the result of a mixed-effect regression analysis, see Eilers & Al^{6,7}.

⁶Paul H. C. Eilers and Brian D. Marx. "Flexible Smoothing with B-splines and Penalties". In: *Statistical Science* 11.2 (May 1996). ISSN: 0883-4237. DOI: 10.1214/ss/1038425655.

⁷Paul H. C. Eilers. "The Truth about the Effective Dimension: The Truth about the Effective Dimension". In: *Statistica Neerlandica* 72.3 (Aug. 2018), pp. 201–209. ISSN: 00390402. DOI: 10.1111/stan.12131.

Simulated examples

A Normal/Beta mixture

Conclusion

A few take-away points:

- (i) The denseness of the class of Erlang mixtures makes it a good approximator for positive random variables, including multivariate random vectors, under different setups such as censure or truncation.
- (ii) The Bayesian interpretation of finite differences roughness penalization, linked to the mixed effects models, allows for automatic and efficient selection of penalisation parameters without cross-validation.
- (iii) Laplace approximation allows to derive confidence intervals without running full blown-up MCMC.
- (iv) There is a potential for extension to censure & truncation, multivariate mixed Erlangs, and even other generic approximators (non-positively supported datasets).

Thanks !